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Part I

Designing Complex
(Meta)Materials: Results and
Perspectives





1 Metamaterials: What Is Out There
and What Is about to Come
F. dell’Isola, D. J. Steigmann, A. Della Corte, E. Barchiesi, M. Laudato

1.1 Technology and Science: A Two-way Interaction

Developing1 new science produces technological benefits: this is so often repeated it
is a commonplace nowadays. In our opinion the converse statement, i.e. that cutting-
edge technology provides substantial stimuli for scientific innovation, has not to be
underestimated either. Hence, the interaction between science and technology has not to
be regarded as unilateral/one-way. In fact (as summarized in Fig. 1.1), the investigation
of theoretical models describing some known phenomena can lead to the development
of new scientifically designed devices which, in turn, might unveil some not-yet-
discovered phenomena. This process of scientific modeling, designing and experimental
discoveries could in principle keep going indefinitely. Of note, the process leads to the
discovery of progressively “higher order” phenomena, which become accessible only
after some necessary “lower order” modeling and discoveries. Apparent examples of
very high-order phenomena are easily found in current research (to mention a recent
and widely known case) in quantum gravity, concerning the discovery of gravitational
waves.

It is a matter of fact that emerging technologies and development of the exact sciences
have a close relation. Actually, it is a leitmotiv in the History of Science that new techno-
logical possibilities lead to new phenomenological evidences, putting in crisis any exist-
ing paradigm and gradually leading to a totally new one. The birth of scientific technol-
ogy in the Hellenistic World, the rise of modern mechanics in the age of Galileo, and the
development of thermodynamics in the early nineteenth century are relevant examples
of this phenomenon. In all these cases, it is by now well-established among historians
of science that a significant conceptual revolution occurred driven by technological rea-
sons. The main goal of these successful new ideas, that nowadays after a long and trou-
blesome process we call classical physics, was to design and describe new technology
(as for example bombards, steam engines, or catapults). Let us examine in more detail
one of the above-mentioned examples: the revolution in the conception of mechanics
due to the results of Galileo and his school. Simplifying necessarily a complex matter,
we can say that, while within the Peripatetic school (the philosophic tradition based
on Aristotle) the motion of objects like the projectiles of bombards does not obey the
same laws that govern celestial mechanics. Galileo managed to include phenomena

1 The present Introduction is based, with large additions and significant updating, on the papers [1, 2].
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Figure 1.1 A graphical representation of the two-way interaction between science and technology
in time. A phenomenon (P1) appears which is not yet scientifically described; a theoretical
model (M1) is built; theoretical results (R1) come from the study of (M1); the application of
(R1) leads to a Scientifically Designed Object (SDO); a new phenomenon (P2) is discovered
as a byproduct of (SDO).

which were previously deemed to be completely separate (i.e. those characterising the
Celestial World and the Terrestrial World) in the same conceptual framework. There-
fore, he established the fundamental uniqueness of Nature regarding its division in
Celestial and Terrestrial World, and concerning the latter in natural and man-made
objects [3].

In our opinion, the new technological possibilities in controlling the micro- and nano-
scale of materials, which are capable of producing objects that, at the macro-level, dis-
play properties that are not found (or very rarely found) in nature, are leading mechanics
to a similar conceptual revolution. Indeed, these methods often produce objects with
peculiar behaviors that cannot be explained by using the classical point of view and
therefore new theoretical models have to be developed.

Moreover, due to the technical manufacturing advancements experienced in the last
years, we are forced to consider again the whole relation between theoretical (and
applied) mechanics and technology. Indeed, thanks to advancement of manufacturing
processes it is now possible to design and develop materials, the so-called metamaterials,
with properties that cannot be found directly in nature, while for thousand of years
these properties have been considered as something which existed but could not be
exploited. Several scientific questions which demand an answer are now arising due
to the advancement of techniques like electrospinning, self-assembly and 3D printing.
We are living today, as in the history of science sometimes happens, in an historical
moment in which the scientific modeling is behind the technological advancement. The
multi-scale (and multi-physics) description of such materials shows a wide range of
exotic behaviors which hides, in their inner organization, a high level of complexity.
Therefore, an effort in the development of mechanics and physics of solids and flu-
ids, of computer-aided technology, and of mathematical and numerical modeling is
now required. The challenge of design and construction of metamaterials is calling
for a stronger theoretical foundation and a pragmatic understanding of what is feasible
today.
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1.2 The Importance of a Universal Terminology

A common feature of novel research topics and emerging fields is the lack of a general
order based on well-established language and concepts. The main problem to which
a confused terminology gives rise is the creation of barriers complicating scientific
communication between researcher from different topics, which is a serious problem
in every branch of modern science. The research on design and manufacturing of meta-
materials precisely exemplifies this phenomenon.

We incidentally recall that (modern) scientific biology started with establishing some
precise taxonomy criteria (eventually to be updated according to our genetic knowledge)
which unequivocally determine the scientific name of each species (once discovered).
Although Aristotle (De Partibus Animalium) had already started such systematization
of biological knowledge, it is only with Linnaeus (Systema Naturae, 1758, 10th edition)
that taxonomical classification displayed its full descriptive power.

It is generally accepted that every part of hard science (including of course mechanics)
should have at least the same level of exactness of biological taxonomy in its termi-
nology. Actually, since hard science deals with a theoretical universe in which there
are virtually infinite objects susceptible of meaningful definitions, this requirement is
even more strict here than when studying sets of objects which are in principle finite
(as biology does).

One of the frontiers of research in mechanics must be situated at the border sepa-
rating the models introduced for describing “standard materials” and those for “exotic
materials.” There are many difficulties in recognizing where such a frontier is located,
especially because the adjectives “standard” and “exotic” are very difficult to make
precise. In what follows, we will consider as “exotic material” a system constituted
at micro level by matter distributed in a refined and complex microstructure where,
for instance, micro gaps divide different deformable micro parts which in some cases
may undergo large localized micro relative displacement. With respect to this definition,
a critical reader may even start discussing initially the most fundamental concept of
“material” and the difficulties involving in its definition. Indeed, if there is a material at
all in such a system one has to find it at the micro level, that is at the level in which the
characteristic length is a fraction of the dimensions of the elements of the microstructure.
To this reader, another one, even more critical, may object that, by magnifying the
image further another microstructure may appear: this microstructure is constituted, for
example, by the partially melted and partially agglomerated grains of the polyamide
powder which has been used as initial input of the 3D printing process used to produce
the considered specimens. These critical remarks, in different contexts and in different
situations, have often been repeated to try to understand the ultimate nature of physical
phenomena (see e.g. Democritus [4–6]).

Therefore, in an effort to be precise, we shall use the term homogeneous material as
follows:

We assume that it is possible to choose a length scale L and a corresponding Representative
Elementary Volume (REV) (a cubic volume whose sides are L) such that, by moving the REV in
the specimen the overall (macro) mechanical response of the material included in it does not
change and can be described exclusively in terms of overall (macro) kinematical descriptors
which can be assumed to be constant for every REV.
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A polyamide, when considering a REV including a group of grains, is a material in the
sense of the previous definition. A pantographic sheet (that we will discuss in detail
in following sections), when considering a REV including a group of cells is another
material, although it consists ultimately, at a lower length scale, of another material,
i.e. polyamide. We refrain here from any other philosophical consideration, which may
cause us to go back to Heraclitus and Democritus, to discuss Epicureans and Boltzmann,
ending with modern Truesdellism (see for more details e.g. [7, 8]).

After having specified what we mean by the concept of material, we observe that
also the standard definition of “metamaterial” as given for instance by the statement
(reformulating the corresponding entry of Wikipedia as read on 6 Dec. 2017) can be
discussed:

Metamaterials (a combination of the Greek word μετά, meaning “beyond” and the Latin word
materialis) are materials engineered to have property that is not found in nature. They are made
from assemblies of multiple elements fashioned from materials such as metals or plastics. The
constituting materials are usually [our italic] arranged in repeating patterns, at scales that are
smaller than the wavelengths of the phenomena they influence. Metamaterials derive their
property not from the properties of the base materials, but from their newly designed structures.

It is also clearly not fully correct. We are particularly surprised by:

• the occurrence of the adverb usually,

• the final statement which seems to underestimate the possibility to design very
interesting metamaterials by considering many base materials which can show
large differences in physical properties,

• by the obscure use of the expression “in nature.”

Indeed, nobody can claim that either iron or stainless steel is a natural material. Humans
needed many thousands of years to develop such “artificial” materials. However, nobody
designates them “metamaterials.” We would like to avoid considering something as
“natural” simply because we are accustomed to its use and its existence.

Tentatively we propose here to call metamaterial:

A material which has been designed to meet a specific purpose, by combining more elementary
materials (characterized by a smaller micro length scale) and by shaping them with geometrical
structures and mechanical interactions (what we call a microstructure) characterized by the
same micro length scale.

We will call micro the level at which the considered structure shows all its (geometri-
cal and mechanical) inhomogeneity and complexity and call macro the level where it
behaves as a homogeneous material.

Note (see [9, 10]) that the more interesting cases, i.e. the cases in which the macro
metamaterial shows a completely different behavior when compared with the micro
behavior, is represented by micro structures in which an extremely marked contrast of
mechanical and geometrical properties occurs.

One of the main goals of this introduction is to show how different research fields are
addressing, by means of several approaches and maybe not in an obvious way, different
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points of view of the same general problem. At the same time, we want to provide a
reasonable (of course far from being exhaustive) coverage of the relevant literature.

In the current research in applied mechanics, what we call here metamaterials, accord-
ing to the previous definition, have been labeled as:

◦ Metamaterials [11–15],
◦ Multi-scale Materials [16–19],
◦ Multi-physics Materials [20–34],
◦ Complex Materials [35–41]
◦ Architectured Materials [42–45, 45–48],
◦ Optimized Materials [49–51],
◦ Negative Mechanical Constitutive Coefficients Materials (Poisson ratio,

modulus, stiffness, etc.) [52–56]
◦ Smart Materials [57–61],
◦ Advanced Materials [62–65],
◦ Composite Materials [66–70]).

As for the theoretical aspects, we may find, for example:

◦ Generalized Continua [71–79],
◦ Higher Gradient Continua [80–87],
◦ Continua with Microstrains [88, 89]
◦ Cosserat Continua [90–97],
◦ Micro-structured Continua [98–114],
◦ Micropolar Continua [115–118].

Apart from some cases of almost exact equivalence (the identification of the over-
lapping between some of the previous fields are studied in some dedicated work, we
refer to [4, 74, 119–124]) these labels do not exactly refer to the same scientific content.
Rather, what they share are goals and motivations behind their origins.

The real challenge, in the opinion of the authors, for both applied and theoretical
mechanics can be summarized in the following:

MISSION STATEMENT – to choose the governing equations of a material describing its desired
behaviour, and successively to design and produce a complex micro-structure (or a multi-physics
system) whose behavior is suitably described by the chosen equations.

This mission statement is the common foundation of all the research lines indicated
by the previous labels. This point of view, in our opinion, may provide a useful guide
in this spectrum of complicated problems. Indeed, by keeping clear this final aim we
do not distract attention from the useful scientific content by focusing on cumbersome
technicalities and subtleties. Thus we simplify the transfer of information about tools
and methods from different areas of science, providing us with a stronger arsenal for
dealing with the challenges.

The authors dare to share the opinion of Richard Toupin (private communication at
4th Canadian Conference on Nonlinear Solid Mechanics, Montreal, 2012) about the rea-
sons behind the dangerous proliferation of names for the same physical or mathematical
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concepts. While referring to a famous quote by Poincaré,2 Toupin declared that often
mechanicians, simply to distinguish themselves among others and in order to have
more chances of financial support, rename “clouds” of concepts, collected in existing
literature, with new terminology. Of course, Toupin blamed this attitude, considering it
detrimental for the advancement of knowledge [2].

1.3 The Relation between Mechanics’ Fundamental Hypotheses
and Existing Technology

The technologies of every advanced society have been based on mathematical modeling
capabilities [125]. The Archimidean mathematical description of engineering artifacts
and phenomena characterized the Western civilization. The great technological and
economical development of the Age of Enlightenment was based on solid mathemat-
ical foundations. However, in this period, and in particular in the following Industrial
Revolution, engineering was based on the limiting (but simplifying) assumption that
mathematical modeling merely had to be focused on the description of pre-existing
materials in order to allow selection of materials in structural design (an introduction
to material selection can be found in [126]). Of course, this idea and the hypothesis
assumed by the fathers of engineering science as it is known today (Poisson, Navier,
Cauchy, Piola, Maxwell, etc.) was based on the observation of (natural) phenomenology,
but the whole scientific and technological thought founded on this paradigm became
basic doctrine. Indeed, in the mind of engineers and scientists, it was deeply established.

As we have already mentioned, however, “higher order” phenomena, discovered
by means of technological innovation, cannot be neglected without limiting our
scientific prospects. In fact, several interesting investigations have seen their evolution
stopped precisely because of the automatic (and erroneous) distinction between
natural phenomena and phenomenological reality tout-court, even if the brand-new
technology of computer-aided manufacturing has made this distinction completely
outdated (see [127]).

To give our reasoning a more concrete character, let us consider a specific example,
concerning the concept of external contact action. If we deal with deformation energy
depending on the objective part of the first gradient of the displacement field, i.e. if
we consider classical Cauchy continua, we are essentially limiting external contact
actions only to surface forces. However, complex microstructures may give rise, in
their homogenized limit, to models based on higher gradients (see above in the previous
section) which are able to describe also other possible external contact actions, such
as double forces, line forces, concentrated forces and higher order objects [128]. In
other words, since 3D printing, electrospinning, or other kinds of technical possibility
allow you to manufacture objects and materials whose microstructures in a continuum
limit can sustain higher order forces (for instance, double forces), the theoretical model
that we are considering cannot neglect them any more. Therefore, to enrich the set of

2 “Mathematics is the art of giving different things the same name.”
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behaviors that your theoretical model can describe, you have to reconsider its assump-
tions. This is what the title of the present section aims to mean: the most appropriate set
of assumptions for the theoretical mechanical construction (and in fact, for science in
general) has to be determined by the technological possibilities. Therefore, during the
formulation of the theoretical model it is not sufficient to consider only purely abstract
reasons without including in the picture also the effects of novel technologies – a notable
example where the description of unusual response of materials to elastic waves required
an appropriate extension of elementary dynamics’ concepts can be found in [129].

One of the most recent conceptual revolutions caused by the emergence of new
technology happened around 1940 due to the development of the first prototypes of
digital computers based on Turing–von Neumann machines. In particular, the possibility
to compute solutions to complex partial or ordinary differential equations for the design
of large-scale production [130] and for scientific experiments [131] by using digital
machines became concrete. Since people working in engineering and science could not
wait for the final establishment of the superiority of digital computers, the supporters
of analog computing, inspired by the new paradigm, started to synthesize analogous
electric circuits described by different mathematical equations. The aforementioned
mission statement has several methodological analogies with this example. Indeed also
in this case, once the equations governing the desired macroscopic behavior of the
material have been chosen, its microstructure (or a complex multi-physics system) has to
be synthesized, giving rise to the behavior described by the chosen equations. However,
the main difference between the competition between analog and digital computers (that
was historically important in the development of computing) and the case of metamateri-
als is the wider generality of the latter in the relevant applications and systems and which
therefore gives rise to demands for a greater effort and sophistication in theoretical
tools.

1.4 Three Approaches to Accomplish the Objective

The beginning of material technology can be traced back to non-sapiens hominids.
This audacious journey can be summarized in the following basic steps [44]:

1. the on site available materials (e.g. bone, wood, or native metals) were used;
2. the optimization of particular kind of materials (e.g. empirical metallurgy tech-

niques) based on empirical attempts started;
3. the birth of approaches based on science (e.g. scientific metallurgy and later the

study of polymers, etc.) occurred;
4. the so-called hyperchoice of materials. Here we mean the development of sci-

entific tools and methods in order to select and compare different classes of
materials which, individually considered, had already optimized applications in
the engineering science;

5. study of the multi-functionality of materials, with increasingly ambitious require-
ments for materials capable of fulfilling conflicting needs.
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Of course, mathematical modeling plays an increasingly important role passing from
one step to another and today the available theoretical tools are not enough to fulfill
the multi-functionality requirements coming from technical possibilities and industry
[42, 132].

In the following subsections we will outline three possible ways to achieve the
mission statement.

1.4.1 Trial and Error

In this approach a conjecture on the structure of a system exhibiting a given behavior is
based on experience and on physical intuition. The validity of such a conjecture has then
to be proved by means of experimental evidence on prototypes. Of course, numerical
simulations, in this approach, play a fundamental role in orienting the trial conjectures
toward the right one. Among the powerful methods available today, Finite Element
Analysis allows us to rapidly get information on the main quantitative properties of
complex mechanical systems. Indeed, its flexibility allows an effective description of
the complex geometry of systems like metamaterials (recent applications can be found
in [133–137], while an historical reference is [138]). Some interesting applications are
the modeling of fracture phenomena by using finite elements with particular interfaces
(see for instance [139, 140]) and isogeometric analysis (see e.g. [141–147]) performed
by introducing elements with high regularity properties.

Another powerful computational tool is the so-called Molecular Dynamics that is
particularly feasible to numerically study systems consisting of a huge number of parti-
cles. It employs equations of motion of classical mechanics to numerically compute the
trajectories of N particles in the phase-space, i.e. the 6N -dimensional space of positions
and momenta (see e.g. [148] for an introduction). Finally, computational methods based
on scale-bridging like DDD, QC, CADD, MADD (see [149] for a discussion by means
of an example of the comparison of these models and other general problems) which
were initially developed to describe small-scale systems in terms of classical physics,
can be useful to describe inelastic mechanical systems.

1.4.2 Generalized Continua Models

The previous approach is the most suitable when only a simple refining is needed
after the achievement of major advancements. However, this is not the most general
scenario and, if we want to achieve technological progress by means of completely
new concepts, we may need to consider a drastic change of paradigm by reconsidering
a considerable part of engineering science. An effective way to achieve this end may
be to re-examine a research line started by Gabrio Piola [150] about the foundation of
continuum mechanics. Actually, maybe even in an unconscious way, a revival of the
ideas of Piola has already started and one of the most fruitful examples is the field
of Peridynamics (for an historical perspectives see [4], while relevant results may be
found in [151–155]). Basically, Peridynamics is the modern term for the most general
formulation of continuum mechanics initiated by Piola, initially introduced to describe
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the mechanics of deformable bodies. It is considered now a very active field also because
standard continuum mechanics, which has provided us with very useful conceptual
tools, seems to be inadequate for the modern open challenges, at least when macro-
modeling is concerned. Indeed, the only way to describe the smaller-scale structure,
once a continuum model has been introduced, is by means of numerical analysis which
is naturally discrete. In fact, apart from some academic exercises solvable in a (semi-)
analytical way, which are not of particular interest for technological application, the
only way to obtain useful forecasting of the phenomena occurring in the system is by
means of discrete numerical methods. However, the main role of continuum mechanics
in this framework is to give rise to numerical code benchmarks. Let us clarify this point
by considering the particular example of the synthesis of second gradient metamaterials.
It was confronted and solved with homogenization methodologies involving continuous
descriptions both at macro and micro level. One has to remark that the need to synthesize
a second gradient (meta) material (i.e. to design a suitable microstructure showing
second gradient behavior at macro level) was formulated in a purely theoretical context
in which even the consistency of mathematical theories was seriously questioned.

This scientific controversy is not modern: already Gabrio Piola [156], when attacked
about the soundness of his continuum models and about the true physical content of
his theories, resorted to the study of a homogenization problem. Indeed he proved the
validity of his macroscopic continuous models by:

i) basing them on the study of a micro structured mechanical system characterized
by simply interacting elementary constituents and a well- specified geometry,

ii) describing such a micro system with a Lagrangian discrete finite dimensional
model,

iii) finally homogenizing said micro models (via what we can call Piola Ansatz) to
get the corresponding macro higher gradient ones (see peridynamics).

The postulation format for higher gradient theories, as understood and formulated by
Piola, is not the format chosen by Cauchy and his successors, and it is definitively more
complex from a mathematical point of view. This should not surprise anybody: more
complicated structures demand more complicated models! On the other hand Cauchy
continua became a standard in engineering sciences: their wide range of applicability
did allow for great advancements in technology and in the understanding of mechanical
phenomena. In a sense engineering sciences became prisoners of the success of such a
particular theory, which was erroneously presented as being the most general possible.
Clearly, also with the impetus of the need to invent new metamaterials, the paradigm set
up by Cauchy seems to need further development, as already demanded by Piola in 1825
even before Cauchy’s full formulation of his ideas. Actually there is no reason why one
should look for Cauchy metamaterials only.

1.4.3 Dimension Reduction of Discrete Models

One of the most important steps in modeling metamaterials is to represent them by
means of a discrete model which is able to describe the relevant phenomenology of the
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identified small-scale substructure. Usually this discrete system is useful to understand
the conceptual basis of the theoretical description of the system. However, due to its
huge number of degrees of freedom, apart from some applications of academic interest
made by means of very powerful supercomputers, it is not feasible for application
to engineering problems. It is therefore useful to look for another discrete model
which is able to capture the most important phenomenological properties of the small-
scale structure but defined on a lower dimensional configurations space. In other
words, say qi , (i = 1, . . . , N ), the degrees of freedom of the small-scale structure
and Qh, (h = 1, . . . , n with n << N ), those of the lower dimensional discrete
model, we look for a kinematic map (which in multi-scale modeling is usually
called “handshake step”) which allows us to determine all the qi once the Qh are
given (see [157] for some interesting results). Since this procedure depends on the
particular problem under consideration, its success depends only on the ability of the
modeler to maximize the fidelity of the handshake map. In some particular cases, it is
possible to prove in a rigorous mathematical way that when some of the parameters
of the small-scale structure vanish in the procedure, the resulting discrete system
yields a good approximation. From this point of view, an interesting situation arises
when both discrete systems are Lagrangian. Indeed, in this case the reduction map
yields the Lagrangian function of the reduced system (which may include also a
Hamilton–Rayleigh dissipation potential) and several useful computational tools are
available.

1.4.4 An Overview of the Three Approaches

In most cases, scientific progress in terms of the Archimedean–Galilean method requires
the synergistic interaction of the aforementioned approaches according to their intrinsic
merits. A concrete way to realize this purpose by using the methods briefly described in
the previous subsections is to produce 3D printed specimens, like the ones in Fig. 1.2
(for details, see below). The literature about architectured materials ([44, 114, 126, 158])
and the fiber-reinforced composites technology available today may inspire the small-
scale structure of the printed prototype. Measures on the mechanical properties of the
3D specimen are useful to test tentative modifications of the parameters. Moreover,
it is possible to exploit a multi-physics approach to obtain the desired behavior at
macro-scale. For instance, one may consider the possibility of introducing some piezo-
electromechanical systems with smaller actuators with respect to the ones considered
in [159–161] at the level of the microstructure of the material. However, due to tech-
nological limitations, it is not possible to achieve a description with a characteristic
length-scale of nanometers with the aforementioned methods (for instance, the fact that
by means of electrospinning it is not possible to produce complex fabrics at nano-scale
is well known). However, once a suitable theoretical rescaling procedure is available,
it could be possible to obtain interesting insights from the nano-scale on the effective-
ness of the fabric concept at macro-level (size-related surface effects are discussed in
Section 1.8).
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Figure 1.2 Bias test on a 3D printed pantographic sheet (top) and simulation; the curves (straight
lines in the reference configuration) are the result of a continuum simulation and therefore they
represent a set of materials points.

1.5 Discrete and Continuous: An Attempt at a Twenty-First-Century
Methodological Position

Most of the longstanding discussion regarding favoring either the continuous or the
discrete approach in the description of reality, and in particular of material behavior, can
nowadays be put in perspective, thanks to the power of today’s theoretical developments
and computation tools.

While at the time of Cauchy and Navier there was still the ambition of capturing all
the features of molecular behavior by means of the tools provided by classical physics,
it has been clear, since at least a hundred years ago, that this is not possible. Still,
continuum models are employed regularly and keep posing challenging problems. Their
philosophical meaning, however, has changed, as they represent in most cases “just”
a useful simplified reformulation of problems that would find their “full” formulation
in terms of Schrödinger equations (or rather Klein–Gordon equations, or rather string
dynamics equations, or anything that will deserve a Nobel Prize in Physics in the next
years). In other terms, continuum models can be judged as suitable (or not) to describe
reality once a certain phenomenological observation scale has been chosen.

Keeping this in mind, it should appear clear that the very concepts of “discrete” and
“continuous,” at least from a phenomenological point of view, have a relative character
rather than an absolute one. It is remarkable that this idea is already expressed by Gabrio
Piola, in his 1845 work Intorno alle equazioni fondamentali del movimento di corpi
qualsivogliono, considerati secondo la naturale loro forma e costituzione (see [5]):
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Therefore it results that the same quantities which are asserted to be negligible for us without
being afraid of going wrong, could be great and not at all negligible quantities for beings which
could be, for instance, capable to perceive the proportions which characterized the structure of
microorganisms. For those beings those bodies which appear to us to be continuous could
appear as bunches of sacks: water, which for us is a true liquid, could appear as for us [appears]
millet or a flowing bunch of lead shots. But also for these beings there would exist true fluids,
relative to which the same consequences, which we deduce relatively to water, should hold true
for them. There are therefore quantities which are null absolutely for all orders of beings, as the
analytical elements used in the Integral Calculus, and there are quantities which are null only
for beings of a certain order, and these quantities would not be null for other beings, as some
elements which are considered in Mechanics.

The point of view expressed here by Piola is intrinsically multi-scale, and fully aware
of the possibility of using different scientific models to describe the same elements
of reality according to the specific needs and limitations of the selected observation
scale. This kind of awareness is very close to much more recent ideas developed in
the philosophy of science (Duhem–Quine thesis, see e.g. [162]). This awareness is very
important, in the opinion of the authors, especially when dealing with the design of
materials aimed at going beyond the behaviors observed in nature, since it avoids the risk
of confusing complex phenomena with the models traditionally employed for similar
(but simpler) ones.

Finally, in the opinion of the authors there is still another feature that makes contin-
uum models important and will always do so, no matter what level of advancement in
computation power is available in the future: their simplicity. To make the point clear,
let us imagine that in the future it will be possible to devise a mathematically perfect
description of any living being once its genetic code and sufficient information about the
surrounding environment are known; let us also suppose that a very powerful computer
will be able to compute the model. Knowing the output of the computation will mean
knowing everything possible about that living being – say, a lion. Still, it would not
be the same as observing it running, or roaring or hunting its prey. As Poincaré once
wrote about an elephant, could you say that a biologist knows it well if he has only
observed it at the microscope? Just like direct observation of the lion and of the elephant,
continuum models give us the simplicity of the overall understanding of a scientific
model/problem. Since among the ultimate goals of science there is a general progress
in the understanding of reality, this feature is by no means of lesser importance. You
can refine the mesh as much as you want, but will never get a horizontal tangent in
the origin for a piece-wise linear interpolation of a graph of y = x2 centered at zero;
however, no one would deny that the parabola “actually has” a horizontal tangent in
zero. We do not want to give up the simplicity of this statement (that we can prove in a
continuous ideal model) just because our computation tool is intrinsically discrete, and
rightly so. Especially in our age of hyper-specialization, the power of simplicity has to
be taken strongly into consideration to avoid the fragmentation of science in a multitude
of narrow and non-communicating directions (for some more reflections on this point,
see [2]).
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1.6 Mission Statement: Examples of Possible Implementations

The aforementioned general form of the mission statement can be realized in different
ways. One of the crucial challenges is to look for materials with optimized/prescribed
constitutive features (e.g. strength, dispersion relations, stiffness toughness, etc.). Fur-
thermore, nowadays several interesting problems can be of interest, in the opinion of the
authors:

1. To find a material exhibiting a large ratio between weight and fracture toughness,
at least in some directions ([163–172]).

2. To find an adaptive material in which a built-in sensing system can activate some
changes in constitutive mechanical parameters; as an example, let us consider
a beam endowed with sensors, activated for instance by an electrical signal or
by mechanical wave propagation, which can modify its moment of inertia, or
different metamaterials aimed to repair bone fracture ([173, 174, 174–187]).

3. To design a material whose microstructure is made of nearly inextensible fibers,
whose main feature is to resist elongation and shear by storing deformation energy
in fiber bending energy [188].

4. To design a granular microstructured material which aimed to damp mechanical
oscillations [189] or a material able to transform, via piezoelectric transduction,
mechanical energy into electromagnetic energy ([159, 190–194]).

5. To find a porous deformable material able to control magneto- or electro- wave
propagation by enhancing Darcy dissipation by means of the presence of a mag-
netically or electrically active nematic fluid, ([195–198]).

6. To find a multi-scale material theoretically described by a deformation energy
which depends on the nth gradient of a displacement field. A possible way is to
consider a beam-like substructure in order to obtain, by means of these structural
elements, fabrics which exhibit non-standard dispersion effects, which may also
include frequency band gaps.

The provided references are only a partial overview of some tools and potentially useful
results which are available in the literature. Moreover, it should be noted also that
the (elementary) theory of the beam is still crucial in almost all considered problems.
Indeed, the study of metamaterials often pushes the development of suitable generaliza-
tions of classical beam models to more complex theories (on generalized beam theory
see e.g. [199–202]).

It should also be pointed out that the beam model already possesses an intrinsic
scaling, being a 1D model in which the mechanical effects of certain lengths (charac-
terizing the cross-section) are driven by scalar coefficients (stiffnesses). Therefore, any
mechanical system employing the beam model as an atomic constituent is intrinsically
multi-scale, displaying (at least) either micro-, meso- or macro-scale effects.
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1.7 Standard Methods and Related Challenges in Material Designing

The mathematical modeling of new technology, in particular in the case of micro-
structured objects, usually follows a procedure consisting of the following steps:

1. To conceive, by means of predictable or already existing manufacturing tech-
niques, a promising and actually realizable microstructure; the main tools in this
case are experience, intuition, or the methods of structural optimization [44, 114,
126].

2. To identify, at least in principle, the smallest length scale at which it is possible
to introduce a field theory. Such a model, depending on the particular identified
length scale of the structure and on the accuracy of the description, can be based
both on classical and molecular dynamics. Usually, the main shortcoming of this
field theory is that, due to the enormous computational effort required, it cannot
be used to make predictions on the system.

3. To overcome this difficulty, an approximate description of the behavior of the
considered complex system can be pursued by introducing a discrete meso-scale
model. Such a model has to be able to describe the interesting overall behavior of
the model on the smallest length-scale introduced in the previous step.

4. To build, by considering a set of simplifying assumptions, an averaged (continu-
ous) macro-model. The main tools are asymptotic expansions, perturbative anal-
yses and appropriate homogenization processes, as for instance was done in [169]
for the pantographic structures case (see below for more details); other interesting
general results based on perturbative methods can be found in [203–206]).

5. To study by means of numerical methods the continuous model, i.e. to consider
a discretization of the model by means of one of the well-established techniques,
like finite element methods (FEM), finite difference methods (FDM), isogeomet-
ric methods, etc.

6. To compare experimental data with solutions obtained via numerical methods
and accordingly refine the model.

Of course, this micro- to macro-scale scheme is far from being the only possible one
and other interesting approaches have been developed in the literature (e.g. the so-called
scale-bridging scheme, in which a coarser and a finer scale are considered and used to
describe the system [207]). Therefore, it is reasonable to question if the aforementioned
scheme is universally valid. For instance, a possible conjecture could be that the steps
3–5 may be condensed to avoid introducing the intermediate continuum model.

Let us focus on this point. Nowadays it is possible to produce structures with a high
degree of complexity and therefore it is very rare to find (semi-) analytical solutions
for the equation of motion of the micro-model (the one discussed in the second step).
Indeed, numerical analysis (discussed in the fifth step) has become gradually the only
way to make a model that relates to experiments. In engineering science, during the
previous two (or more) centuries, the most appropriate description of reality has been
realized in terms of continuous models. Currently, however, a novel epistemological
picture has emerged, driven by the awareness of the discrete nature of both the used
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computational tools and of matter itself. Of course, the use of continuous modeling
and of homogenization techniques still plays a fundamental role (recent relevant results
can be found in [122, 208–212], some useful general references are [213–215], while on
related numerical methods we recommend [216]) but what is changing is the motivation:
to save computational time, continuous models are very effective. Indeed, by means of
homogenization methods, it is possible to:

1. Capture the main features of the given discrete system [217].
2. Neglect phenomena which are characteristic of a length scale too small to give

some contribution to the behavior of the structure as a whole.
3. Select for the system only the characteristics which are interesting for the consid-

ered class of applications.

Usually, this procedure leads to simpler equations than those obtained by means of
discrete modeling, and often they can be solved by already existing numerical methods.
Therefore, the steps

(a) microstructure (discrete) −→ (b) macrostructure (continuous) −→(c) numerical
formulation (discrete)

can reveal for the considered structure (as discussed in Section 1.8) all the fundamental
physical features.

The relationship between classical and more sophisticated mechanical models char-
acterizes in a complementary and complex way the identification of the micro-meso-
macro scale, and is crucial to actually understanding both the homogenized models and
the meso-scale with respect to the micro-model. Let us clarify this point by discussing
it in more detail. As long as we consider a length-scale large enough to neglect quantum
effects, it is possible in principle to model the micro-level of a structure by using the
usual Cauchy continuum model (see Section 1.8, for a discussion about effects at a
classical nanoscale). Of course, as we have already discussed, the main shortcoming of
such an approach is the huge computational cost that it requires. Quite often, during the
run of a numerical analysis of the micro-model of a complex structure, it happens that
even the most advanced computational possibilities of software and hardware available
today are overwhelmed, and that even a physical breakdown of a powerful workstation
may occur (as has actually happened in the authors’ research experience!). A meso-
model, instead, dealing with simpler objects (like chords, beams, cylinders, cylinders
of Saint-Venant, etc.) replacing Cauchy continua, is usually more convenient from the
computational point of view, and therefore can be very useful once it is successfully
established on simplifying right assumptions, where by right we mean that they do
not lead to loss of relevant physical information (that usually is not a trivial task).
In this framework, the adaptation/generalization of already existing models is often
required (consider for instance [76, 218, 219] in which a suitable nonlinear model for
the beam is introduced). The reward for this effort is a computational advantage of
several orders of magnitude, reducing weeks of computational times to a few hours or
minutes. Even better results can be achieved by correctly choosing the homogenized
model for the considered system. Usually in such cases, new and more sophisticated
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generalized continuum models are used, in place of trying to adjust already existing
models. Finally, we should note that in general it is far from being a trivial task to prove
that the chosen micro-model actually converges to the desired homogenized one, and
quite often it is difficult even to choose the particular suitable mode of convergence
[78, 220].

1.7.1 Perspectives for Generalization and Extension of Available Results

Both finite and infinite dimensional systems can be described in terms of Lagrangian
mechanics, which is founded on stationary principles, exemplified by the principle of
virtual works. However, if we want to produce predictions by means of an (intrinsically
discrete) Turing–von Neumann machine to be compared with experimental evidence,
infinite dimensional Lagrangian systems must also be approximated to discrete ones.
The search for simplified discrete Lagrangian systems which are able to approximate
more complex ones and can be obtained without dealing with homogenized continuous
field models is becoming a critical field in research. Although some general results are
available in this framework, they have never been considered for studying structural and
material mechanics and this may be a new field of application for the advance of discrete
mathematics.

An in-depth investigation is needed, from a historical viewpoint, for the reason behind
the choice of the fathers of analytical mechanics, like Poisson, Piola, Cauchy, Navier,
Boltzmann, and all their successors (despite the fact that they were deeply persuaded
by the real discrete nature of matter!), for describing deformable bodies by means
of continuous models. A simple answer may be that such a choice was induced by
the ingrained habit of seeking analytical solutions by means of classical mathematical
analysis methods, or by means of every kind of series expansion developed to produce
semi-analytical solutions. However, it cannot be ruled out that these founders, when
dealing with the investigation of the global behavior of a structure, had clearly in mind
the importance of continuous models. This epistemological point of view may be sup-
ported by the standard classification of partial differential equations into hyperbolic,
parabolic, and elliptic. Let us for instance consider a possible chaotic and extremely
unlikely (so not relevant from the macroscopic point of view) time evolution of a set
of masses connected by non-linear springs. By proving that the hyperbolic D’Alembert
wave equation governs this system in a small deformations regime, we gain a deep
understanding of their total behavior. We expect that the main results of forthcoming
researches will be obtained by simply considering the interconnection between elemen-
tary structural elements. In particular, it is possible to generalize the results obtained
for 1D systems [121] by synthesizing microstructures associated to a continuous model
exhibiting wave propagation band-gab frequencies [221], the onset of trapping boundary
layers or energy trapping at the microscopic level and consequent enhanced damp-
ing [222, 223]. The model for fabrics described in [224] exemplifies such a multi-scale
structure, however, concerning static problems only. Some other generalizations of these
research lines involve:
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1. The introduction, at a smaller scale, of kinetic effects.
2. The generalization to higher dimensional structures (2D (see [122]) and 3D).
3. The study of multiphysics effects, such as those based on the piezoelectric effect,

by introducing suitable transducers [225–227].

Newly arisen technological possibilities also require new results in the framework of
the study of instabilities. Indeed, it is predictable that, in a complex system, micro-
structure instabilities can lead to various kinds of “macro” effects, including for instance
phase transitions [228, 229] and other kinds of bulk behavior. It is therefore crucial to
deeply study and understand the complex instabilities to fully exploit the microstruc-
ture’s potential. In the literature, it is possible to find in this regard relevant results
concerning both specific issues related to the behavior of the microstructure [230–233]
and more general aspects [234–247].

1.7.2 Experimental Features

The evolution of mechanics, as already discussed, has been deeply influenced by the
emergence of computer-aided manufacturing, in both theoretical and numerical inves-
tigations. Among many methodological novelties, it is particularly remarkable that,
in computer-aided manufacturing, the same code (or compatible version in different
software of the same code) can be employed to produce both a sample and to establish
the topology for performing numerical simulations. The methodological consequences
of such a feature are very deep and they involve also the epistemological nature of the
problem. Indeed, the power of the whole concept of “describing reality by means of a
theoretical model” seems to increase as we sidestep the approximate nature of numerical
simulations by this model identification between the one realizing the object and the one
used for the numerical analysis.

As for the experimental side, some remarks have to be made about the differences
between the various computer-aided manufacturing techniques. Indeed, while the tech-
nology of 3D printing allows for a high quality control precision (at least of the order of
10−2 mm) to produce specific multi-scale fabrics (see for instance [127, 248, 249]),
electrospinning technology admits a more limited precision (see for instance [250–
254]) but it is able to allow the construction of micro- (and even nano-) structures.
Control capability improvement of electrospinning techniques is, in this context, a very
important problem. For example, it could be useful to design new devices which are able
to exploit the dependence of surface tension on the curvature of the outer interface of the
injected filament [255]. Furthermore, another task of great interest that could give rise
to new applications among the several that electrospinning has already in several fields
(for instance, see [256] for tissue engineering applications), is analysis of the sensitivity
to estimate the effect on the global behavior of the considered fabrics of micro- and
nano-imperfections. A remarkable example of such applications is the construction of
polyurethane biomimetic scaffolds which are able to drive the growth of cell tissues.
In particular, in [257] it has been shown how a thin pre-stretched elastic polyurethane
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Figure 1.3 An electrospun pre-stretched polyurethane metamaterial is used as a scaffold for tissue
growth; left: single spheroid tissue on the electrospun scaffold; right: seven tissue spheroids
fused together, on the scaffold. The areas of tissue spreading and attachment-dependent cell are
indicated by the arrows; scale-bar 300 μm.

Figure 1.4 Left: tissue spheroids adherent to the electrospun scaffold; right: the adhesion to the
electrospun matrix of tissue spheroids tissue is shown by the SEM image.

electrospin scaffold can be exploited as a supporting template to rapidly biofabricate
thick tissue-engineered constructs (see Fig. 1.3 and 1.4).

Apart from the technical difficulties that one has to overcome to achieve the desired
accuracy degree at nanoscale, deeper problems arise related to size effects of nano-
sized objects, which do not appear at macro- and micro-scales. Of course, some of
these problems arise due to the intrinsic quantum nature of physical laws which govern
phenomena at a small enough length-scale; moreover, other effects that can be fully
described even using a classical approach, but which become more and more relevant
as the length-scale decreases, also appear well before the need of quantum mechanics.
These kind of effects have a crucial importance for the theoretical and experimental
study of metamaterials and for the full exploitation of their behaviors. We will provide
an overview of them in Section 1.8.

We will end this section by noting that, apart these advanced computer-aided man-
ufacturing procedures and techniques, there are several others that are producing new
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Figure 1.5 Handicraft metamaterial with exotic mechanical properties (negative stiffness, high
damping, snap-through, etc.): paper made Tachi-Miura polyhedron realized by means of origami
structures. Left: digital image of the prototypes; right: the top of the prototype (original pictures
by the authors).

interesting micro-structured materials. Indeed, by means of ordinary industrial proce-
dures and handicraft methods (at least for the realization of prototypes), many inter-
esting metamaterials exhibiting new promising behaviors have been realized. As an
example of this, one can consider the one discussed in [258], in which a Tachi-Miura
paper polyhedron is studied and realized (see Fig. 1.5).

In particular, the cross-sectional area of the structure was measured by the authors
and they have studied the dependence of the mechanical properties of the structure
on it. In the right panel of Fig. 1.6 is represented the ratio of the normalized (i.e.
divided by the density of torsional stiffness) applied force versus the folding ratio. Under
certain dynamical circumstances hysteresis effects can arise, as shown by its loading and
unloading behaviors, and can be used to design materials characterized by interesting
damping properties. In Fig. 1.6 (left panel), the system is seen to reach three different
configurations under the same value of the normalized force with significantly different
folding ratio.

An interesting example of handicraft metamaterials is the one studied and realized by
Becot and Boutin in [259]. The acoustic properties of a rigid porous medium, saturated
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Figure 1.6 Left: The paper Tachi-Miura polyhedron is shown, under the same normalized force,
in three different configurations; right: snap-through response and force-folding ratio
relationship (original rendering of pictures provided by the authors).

Figure 1.7 Another example of a handicraft metamaterial: hollow plastic spheres (138 mm high)
with a central impervious cylinder. These spheres can be both resonators or impervious hollow
spheres (for details, see Table 1 in the reference paper). The space between the spheres can be
either filled by a granular medium or occupied by air. Left: prototype geometry; upper right: a
prototype; lower right: cut of the two kinds of Helmholtz resonators (original pictures by
Professor Claude Boutin).

by a gas, with inner resonance effects were investigated by the authors both theoretically
and experimentally. They have realized a prototype made by packing in an approxi-
mately cubic geometry a set of cut hollow plastic spheres (see Fig. 1.7), and they have
experimentally confirmed that the medium effective bulk modulus was modified by the
resonators, inducing high attenuation and strong velocity dispersion in the frequency
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Figure 1.8 For the system represented in Fig. 1.7, sound absorption coefficient at ambient
conditions of pressure and temperature is shown. Thick lines represent measurements, while
dashed lines represent simulations (original picture by Professor Claude Boutin).

Figure 1.9 Left: Aluminum sheets acting as resonators by means of a shaking table (Bristol
Laboratory for Advanced Dynamics Engineering); right: zoom on the sheets (original pictures by
Professor Claude Boutin).

range of the theoretical band gaps. At ambient condition of pressure and temperature
of the sphere packing shown in Fig. 1.7, the coefficient of sound absorption is shown
in Fig. 1.8. Simulations are represented by the dashed line and measurement by the
thick one. An analogous investigation is reported in [260] (for similar researches see
also [261–264]) concerning an analysis of the bulk modulus effects of microstructure
resonance with respect to resonators made of aluminum sheets on a shaking table (see
Fig. 1.9). In Fig. 1.10 is shown the effect of the addition of 1 and 37 sheets on resonance.
This research line is only one example of the big efforts that researchers are applying
to so-called locally resonant mechanical metamamaterial frameworks (see for instance
[265, 266]).
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Figure 1.10 Changes in spectrum surface/table for the system shown in Fig. 1.9. Triangular
dots, 1 resonator: very close to the usual layer’s resonance; circular dots, 37 resonators: layer’s
resonance in x resonant direction drastically changes while in y inert direction the usual
resonance peak appears; square dots: standard impedance analysis; Ub and U� are respectively
the displacement to the base of the sample and of the material points belonging to the upper
surface (original picture by Professor Claude Boutin).

1.8 Surface-Related Effects in Micro- and Nano-structured Materials

Surface- and interface-related effects in the microstructure can have significant effects
on the behavior of a mechanical system (see for instance [267, 268]). For this topic, a
comprehensive and general theoretical framework is still lacking and researchers from
different fields are making big efforts in order to develop one, or at least to make the
puzzle clearer. In what follows, we will briefly discuss what is already known and which
open problems have to be still understood.

The main idea is that size-related behaviors strongly depend on the presence of sur-
face effects in the complex micro- or nano-structures. It is possible to find several exam-
ples in the literature of new complex-microstructured materials which are able to exploit
surface-related effects and their consequences, and this rapid development of micro-
and nano-technology is applying a strong impetus for new theoretical developments. It
is possible to made a distinction between “intrinsic” and “extrinsic” size effects (see
for instance [269]), i.e. between the dependence of the bulk properties on the micro-
and nano-structure or on the size of a sample, respectively. Interesting examples can be
found in [270, 271] and [272–276], respectively.

Let us start by considering the geometry of surfaces in the simplest case, i.e.
“perfect” surfaces. Differential geometry is the main tool able to describe them, and
one then has to take care in considering the special physical properties of the system
(for instance, the ZnO nanotubes and nanocrystals studied in [277] and shown in
Fig. 1.11).
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Figure 1.11 ZnO crystal and ZnO nanotubes.

Figure 1.12 ZnO nanoarray (respectively 300x, 1200x, 5000x and 10000x from top left to bottom
right).

Of course, a perfect surface is just a particular case. Indeed, geometries showing
large irregularities appear in several cases, even if the microstructure is formed by
nanocrystals or nanotubes, because, as shown in Fig. 1.12 (see [278]), they may admit
quite complicated and non-uniform spatial configurations. This kind of material has
several applications and can be exploited to produce the elementary building blocks
of micro- and nano-electromechanical systems, like actuators or sensors (see e.g.
[278–284]). A detailed mathematical description of this kind of surface is completely
pointless, and it is preferable to aim instead to develop a suitable averaged model and,
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Figure 1.13 Black silicon for solar cells.

in the authors’ opinion, this research direction could lead to promising results. An
interesting research line in the same spirit is the theory of layered shells and plates
developed in [285] and which has interesting applications to photovoltaic technology.
Another example is the so-called black silicon, which has important applications to
development of energetically efficient solar cells (see Fig. 1.13 and [284]). Other
examples of specific properties obtained by exploiting highly irregular surfaces are
provided by bactericide and self-cleaning coatings [286–293]).

A still active research field is the study of the concept, introduced by Gibbs [294],
of surface tension for solids (in [295, 296] and in the works there cited is coverage of
recent literature). A non-linear elastic solid which is able to take the surface tension into
account by means of a pre-stressed membrane on the surface was studied by Murdoch
and Gurtin in [297, 298]. This model is able to describe differences in mechanical
properties related to the size (see e.g. [299]), and has therefore applications in micro- and
nano-mechanics [300–302]. The success of this model is measured by considering the
several proposed generalizations which are able to take into account thermoelasticity or
fracture or also the external membrane bending stiffness [303–308]. Providing solutions
to IVPs (initial value problems) and BVPs (boundary value problems) which are met in
surface elasticity is of course very useful in this framework; related results are provided
in [309–312]. An interesting general result is that the presence of surface stresses leads,
in linear surface elasticity, to a stiffening of the material (see for instance [311, 313–
317]). This theoretical result allows us to understand that surface reinforcements, in
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fracture mechanics, can influence the behavior of solutions near singularities like holes
and cracks (see for example [307, 308]).

We conclude this section about surface stresses and effects by listing other recently
developed related topics that it is possible to find in the literature:

1. in the Gurtin–Murdoch model framework, finite deformations of elastic solids are
studied in [318–321];

2. studies of bodies with surface stresses based on finite element methods can be
found in [322–324];

3. investigations on surface energy written in terms of bulk energy excess are pro-
vided in [325];

4. studies on how free vibrations of materials influence surface stresses can be found
in [326–330];

5. a study of linear elasticity of BVPs with surface stresses is discussed in [309–
312, 331];

6. atomistic simulations and other ab initio methods are covered in [332–335];
7. higher gradient continuum models including surface stresses are discussed

in [295, 336–339].

1.9 An Example: Pantographic Structures

In this section, as an example, we will briefly discuss 3D printed pantographic struc-
tures, that can be considered as a model case of the approaches proposed in Section
1.4 to study a structure. A pantographic sheet is a structure consisting of long fibers
set in parallel arrays, orthogonal to each other. By means of internal pivots, fibers
of different arrays are connected (see Fig. 1.2). These fibers are modeled, depending
on the particular application under study, as Euler or Timoshenko beams, or by even
more general models [167, 340]). Although this system may appear to have a simple
geometry and mechanics of its microstructure, it is nevertheless able to exhibit a very
rich and exotic macroscopic behavior that poses difficult challenges to describe its
theoretical characterization. The main reasons are primarily: i) inextensibility has to be
taken into account; ii) there are macroscopic configurations, the so-called floppy-modes,
not associated with any strain energy; iii) due to the four different length scales which
characterize its microstructure (namely the fiber diameters, the fiber spacing, the closest
pivots distance, and the pivots size) it has clearly a multi-scale nature that has to be
considered in the theoretical model.

Pantographic sheets are a perfect example of the synthesis problem of second gradient
materials (see the final discussion in Section 1.4.2) using architectured microstruc-
tures. One must remark that the problem was solved with a double scale homogeniza-
tion process (see [83, 224]). Indeed in the cited papers one first considers “slender”
continua then obtains, after homogenization, some beam elements and subsequently
interconnects such beams with ideal pivots and performs a second homogenization.
Already, in the particular synthesis process just cited, ideal pivots seem to represent
a kind of preferred constraints in the chosen class of beams, micro lattices, which
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Figure 1.14 Left: shear test with a hard device on a polyamide 3D printed pantographic sheet.
Right: a sample with parabolic fibers.

appear to be essential to produce second gradient macro continua. In is noteworthy
that the obtained homogenized macro equations (see [341, 342]) actually show some
pathologies which reflect the exotic behavior of the considered meta materials. These
mathematical pathologies are of interest by themselves (see the detailed discussion again
in [342]) as the theoretical issues that they raise represent an intellectual challenge
and also a means for revealing potentially interesting new phenomena. One can see
therefore that the construction and the study of pantographic sheets with perfect pivots
were driven by the need to verify the consequences of some theoretical considerations
involving continuum models, their mutual relationships, the logical consistency of their
formulation and their physical meaning.

One of the most interesting features of pantographic structures is that they show a very
favorable strength/weight ratio, and there are experimental proofs of their particularly
safe behavior in fracture [343]. Indeed, such structures have been shown to firmly
sustain load long after the beginning of a rupture: the stored elastic deformation energy
is comparable to that accumulated by the fibers from the end of the elastic regime to the
final failure (a shear experimental test is shown in Fig. 1.14, left panel). This particular
feature suggests promising applications in the aerospace and aeronautical industries (for
numerical investigations see [344, 345], for micro-macro identification see [346] and
for experimental results see [347]). The structure can be generalized to curved fibers
(see [348] for some numerical results), which can allow us to exploit different promising
mechanical effects, such as an arch-like response to traction (a 3D printed sample is
shown in Fig. 1.14, right panel).

For health-monitoring purposes, flexible bio-inspired electronics were recently devel-
oped, for instance by Nanshu Lu and collaborators (see for example [349]), and can
be considered as a possible ambitious application of pantographic structures. Indeed,
a generalization of pantographic structures has been proposed (see Fig. 1.15) which is
able to mechanically conform to skin tissue, in the sense that if the epidermis deforms,
the electronic systems remain congruent to it (for coverage of the results in this topic,
see [350–356]). This kind of mechanical behavior can be exploited also with other soft-
tissue biomimetic applications (for the employment for vascular prosthesis of similarly
architectured materials see Fig. 1.16). A deeper understanding of the mechanics of these
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Figure 1.15 Epidermal flexible plate.

Figure 1.16 Scheme of an architectured material employed for a vascular implant inserted in a
silicone elastomer and made of NiTi knitted fabric.

kinds of structures, together with a deeper knowledge of the skin mechanophysiology,
is crucial and will lead to other ways to exploit the potential of pantographic structures.

1.10 Final Thoughts before Moving On

The present scientific understanding of Nature can be considered as the most detailed
and the deepest ever attained by humankind. The production of unexpected and won-
derful mechanisms, tools, devices, and solutions to the problems for which people
have been seeking since the dawn of humankind is pushing modern technology toward
tumultuous growth. From the historical point of view, this is quite similar to what
happened during the Renaissance era, when scientists, by exploiting technological trans-
fer, innovation, and scientific knowledge (also due to a general rediscovery of Western
science, in particular Hellenistic and Italian, see again [125]), were increasingly able to
shape modern human society, and ultimately the quality of life.

Following this historical comparison, it is therefore reasonable even nowadays to
recognize the stream of innovation and the methodological considerations which ani-
mated all Renaissance men, Galileo Galilei being first among them. We can read in
Galileo’s Il Saggiatore ([357], p.232):

La filosofia è scritta in questo grandissimo libro che continuamente ci sta aperto innanzi a gli
occhi (io dico l’universo) ma non si può intendere se prima non s’impara a intender la lingua,
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e conoscer i caratteri, ne’ quali è scritto. Egli è scritto in lingua matematica, e i caratteri son
triangoli, cerchi ed altre figura geometriche, senza i quali mezzi è impossibile a intenderne
umanamente parola; senza questi è un aggirarsi vanamente per un oscuro laberinto.

Which was translated by Stillman Drake (in [3]) as:

Philosophy is written in this grand book, the universe, which stands continually open to our
gaze. But the book cannot be understood unless one first learns to comprehend the language and
read the letters in which it is composed. It is written in the language of mathematics, and its
characters are triangles, circles, and other geometric figures without which it is humanly
impossible to understand a single word of it; without these, one wanders about in a dark
labyrinth.3

These words should not lead the reader to believe that Galilei is part of the “Platonistic”
philosophical vision, at least in the way in which people nowadays interpret it. For
Galilei (and ourselves), mathematics is not a reality outside our mind: in his words,
“Philosophy” is written in a mathematical language and the only way to understand the
universe is by means of a philosophy which exploits the tools and the scientific logical-
deductive methods given to us by mathematics. Any investigation in engineering sci-
ence, aimed to exploit a phenomenon for developing its applications, has to be founded
on a preparatory deep understanding of the nature of this phenomenon. Therefore, in
engineering mathematical formulation of predictive models has to play an essential
role. Moreover, the lucid observer can discover that mathematical knowledge has shaped
(and is shaping nowadays) our environment, our “ecological niche,” and our world by
means of the technology and the engineering applications which mathematics ultimately
makes possible. The world is not written in mathematical terms: mathematical symbols
are the fundamental tools which our mind exploits to shape the world, to control and
predict its phenomena, and to design the artifacts which surround us. From this point
of view, it is natural that human minds are able to recognize the mathematics behind
the artifacts. Let us clarify our point by means of an example: Navier’s project to
design a suspension bridge, starting from mathematical modeling, failed due to the
poor knowledge of the mechanical behavior of foundations which people had at that
time (in any case, this attempt pushed the subsequent development of geotechnics).
However, the mathematical approach by Navier to the study of this project led to the
techniques used to cross large distances, without intermediate pillars, changing forever
our highways, railways, and cities (see for instance [358], and [359]). Similarly, a highly
mathematically based study on tube-frame structural systems allowed Fazlur Rahman
Khan, among others, to project and to realize the twin towers and, after that, many other
skyscrapers were built following these lines. Furthermore, the role played by failure
in mathematical problems is as important as success in developing our technology. As
an instance, among many possible structures, the Warren truss was mainly chosen due
to the fact that it has concentrated loads on the nodes, modeled as ideal hinges. This
feature was able to make the problem solvable, heavily cutting computational costs at a
time when computers were not readily available; today this is the main reason why, even

3 It is unfortunate, in the opinion of the authors, that a complete translation into English of the whole works
of Galileo is not easily found.
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if our software is generally able to solve computational problems involving distributed
bending loads, this kind of structure is so often employed.

The main take-home point of this Introduction is that mathematical modeling is now
able to shape “exotic” novel fabric materials. Their physical behavior is chosen a pri-
ori by mathematical equations which, in turn, will determine the structure of the fab-
ric material. The only limit in the conception and design process is the amount of
mathematical knowledge which we are able to handle. The limits of mechanical and
mathematical theories and models nowadays, exactly like the lack of knowledge in
the previous example of Navier’s bridge, are at risk of holding back the development
of our technological capabilities, by imposing in particular restrictions on the mate-
rials which can be exploited in any engineering application. Only the development
of more powerful mechanical, numerical, and mathematical methods will allow us to
develop materials with better features and to improve their capacity to sustain electri-
cal, thermal, or mechanical external actions. In this sense, one of the most useful and
practical tools available in engineering is certainly mathematics. Finally, it has to be
remarked that, in order to inform and validate any of the developed models and theories,
new experimental techniques are nowadays needed in the field of novel engineered
materials.

The authors of this book hope that it will give an effective overview of what has
already been achieved and what has still to be investigated in the vast field of complex
mechanical metamaterials design, prototyping, and modeling. It has therefore been
unavoidable, in order to reach such objectives, to provide the reader with extensive
literature lists throughout the book.
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2 A Review of Some Selected
Examples of Mechanical and
Acoustic Metamaterials
E. Barchiesi, F. Di Cosmo, M. Laudato

2.1 Mechanical Metamaterials

2.1.1 Introduction

Recent improvements in manufacturing techniques together with developments in the
capability of manipulating materials at the scale of micro- and nano-meters, have
enormously accelerated the production of new scientifically designed materials with
extraordinary acoustical and mechanical behaviours (we will call them metamaterials).
Among the several manufacturing techniques which are widely used, we can mention,
for instance, 3D-printing [2–6], roll-to-roll processing [7, 8], optical litography [9],
electrospinning [10, 11], dry and wet etching, micromolding, wet bulk micromachining,
etc. The main reason for these exotic behaviours, observed at a macro-level, can be
found in the particular microstructure underlying the metamaterial, while the physical
and chemical properties of the constituents play a very marginal role. It is appropriate
to note here that the prefixes macro- and micro- are not referred to a given absolute
length scale (in particular micro does not mean micro-meters [1]). According to the
usual nomenclature used in the metamaterial framework, with the prefix macro- we
will denote, generally, the scale at which a certain phenomenon is observed, whereas
the prefix micro- is related to the characteristic length of the structure underlying the
metamaterial, which is usually determined during the design phase and is limited by the
relevant manufacturing process.

Traditional materials are not able to satisfy the continuous quest for extreme perfor-
mance and, as a natural consequence, metamaterials with tailored extreme properties
have attracted the attention of many scientists.

This section will present a survey of the state of the art in the field of metameteri-
als which primarily involve mechanical phenomena. Metamaterials, indeed, have been
introduced from the very beginning, as materials whose macroscopic exotic behaviour
is determined by microstructures designed to exploit coupled interactions of different
nature (multi-physics phenomena). For instance, there exist metamaterials, also called
smart materials, whose microstructures are controlled by means of electromagnetic
devices. Here we will focus only on one family of metamaterials, the one which involves
only mechanical processes both at the micro- and macro-scale.

This section is divided into two parts, each one comprising several sub-sections.
The first part is mainly a survey of promising microstructures, subdivided into four

52



A Review of Some Selected Examples of Mechanical and Acoustic Metamaterials 53

smaller groups: extremal metamaterials [17–25], metamaterials with negative constitu-
tive parameters [26–28], pantographic structures [29–34] and metamaterials with fold-
able microstructures [22, 35, 36].

The second part will focus on more general theoretical discussions: the goal of this
part is to show how (sufficiently general) models can drive the design and manufacturing
of new materials [25, 37–39] and help in accomplishing the metamaterials mission
statement.

2.1.2 A Survey of Existing Microstructures

In this sub-section we will present the main features characterizing some classes of
mechanical microstructures which have proved to be promising and are the most
widespread in the literature.

We first require the introduction of some standard nomenclature. For instance, central
properties to which we will often refer are so-called engineering material constants: bulk
modulus (or compressibility), elastic Young’s modulus, shear modulus (also known as
modulus of rigidity), and Poisson’s ratio provide useful information within the paradigm
of Cauchy mechanics. For the sake of completeness, before discussing the properties
of specific microstructures, we will briefly introduce the definitions of these physical
quantities.

The bulk modulus, B, describes the resistance of a material with respect to compres-
sion and it is defined as the ratio of pressure variation to that in volume. It is positive
if the volume of the relevant material decreases to correspond with a pressure increase.
The elastic Young’s modulus, E, is defined as the ratio between the force per unit area
exerted on a material along a specific axis divided by the strain along that same axis
(given a material segment, the strain is the ratio of its deformed length to the initial
one). The shear modulus, G, measures the resistance of a material to actions which are
parallel to the surface of the material. Finally, given a specific axis, the Poisson’s ratio,
ν, is defined as the ratio of the transverse strain to the corresponding axial strain.

Extremal Metamaterials
Extremal metamaterials were introduced by Milton and Cherkaev in 1995 while they
were trying to understand how to build a material with a specific elasticity tensor [37].
Indeed, composites made up of these extremal metamaterials can reproduce any desired
elasticity tensor, as we will see later in this section. The main feature of an extremal
metamaterial is that it is very stiff when undergoing some modes of deformation,
whereas it is very compliant in others. Roughly speaking, the corresponding elasticity
tensor possesses only very large or very small eigenvalues. Since in 3D-elasticity
the strain tensor has six independent components, we can collect three-dimensional
extremal metamaterials into seven groups, according to the number of deformation
modes with respect to which the metamaterial is compliant: null-mode, uni-mode, bi-
mode, tri-mode, quadra-mode, penta-mode and hexa-mode (these modes will be called
easy modes). We are going to illustrate only the microstructure corresponding to a
penta-mode material, since the combination of penta-mode metamaterials with different
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easy modes makes it possible to build all the intermediate materials [37] mentioned
above. On the other hand, null-mode and hexa-mode materials are simply isotropic stiff
and compliant materials.

Pentamode Materials
According to the previous classification, penta-mode materials possess five easy modes,
which means that five eigenvalues of the elasticity tensor (in the Voigt representation)
are very small with respect to the last one. From an experimental point of view, penta-
mode metamaterials preserve their volume when they are subject to a deformation.
From a theoretical point of view, if one describes the behaviour of such metamaterials
by introducing a continuum model, this property can be modelled by requiring that
the gradient of the placement field has a determinant, i.e. the Jacobian, equal to one.
According to Cauchy linear elasticity theory, this implies a very large bulk modulus with
respect to the corresponding shear modulus and, consequently (by looking at formulas
relating different material parameters for materially linear isotropic Cauchy continua;
a useful table is reported in https://en.wikipedia.org/wiki/Elastic_modulus as retrieved
on 19 July 2019), Poisson’s ratio has to be close to ν = 0.5. Such a behaviour, where
shearing effects are negligible, is typical of incompressible fluids. This is the reason why
penta-mode metamaterials are also sometimes referred to as meta-fluids or meta-liquids.

A specific periodic microstructure, which behaves as a penta-mode metamaterial, has
been designed by Milton and Cherkaev and is proposed in [37]. The fundamental cell is
composed of identical beams arranged in a diamond-type lattice geometry (see Fig. 2.1).
The beam elements forming the cell have a peculiar variable cross section: they are made
up of two cones joined at their bases and the four beam elements constituting the unit cell
are connected through one tip at the centre of a tetrahedral lattice, while the remaining
tips form the vertices of the unit cell. The realization of any kind of microstructure is

Figure 2.1 A penta-mode metamaterial. The four beam elements are arranged to form a
diamond-like fundamental cell.

https://en.wikipedia.org/wiki/Elastic_ modulus
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clearly limited by the resolution of the relevant manufacturing process. Approaching
10 years ago, in 2012, Wegener and collaborators realized such a microstructure [17] at
the micro-meters scale.

Because of the specific variable cross-section, which presents an apex, the stiffness
of this metamaterial is not affected by the radius of the base of the cones constituting
the beams. On the other hand, by varying this parameter the mass can be significantly
changed. In other words, this microstructure permits us to modify its stiffness and its
mass density independently. Because of their properties, penta-mode extremal meta-
materials could be used as elastic and acoustic cloaks, or they could be employed
in designing porous tissue engineering scaffolds, where the possibility of changing
stiffness and mass density independently could be exploited to improve cell adhesion
or tissue regeneration rate. In order to fruitfully build cloaks using metamaterials, it is
fundamental to choose properly the length of the unit cell. Indeed, it is well known that
the ratio of the wavelength of the external action to the lattice constant deeply affects the
behaviour of the metamaterial. There have also been some proposals aimed at making
the previous microstructure anisotropic, that is, e.g. that the velocity of longitudinal
waves will depend on the direction of propagation. For instance, Kadic et al. [41] have
built a similar microstructure where the point in the fundamental cells where the four
beam elements meet has been shifted. The role of different types of lattices have also
been investigated [42] in the achievement of penta-mode metamaterials.

Dilational and Auxetic Behaviours
The term ‘auxetic’ was first suggested by Evans et al. [43] to name those materials
characterized by an increase of the transverse dimension when subject to a longitudinal
tensile load along a certain axis. Indeed, this word comes from the Greek adjective
ανξητικζ, ‘auxetikos’, whose meaning, ‘which tends to increase’, perfectly agrees with
the behaviour of these materials.

A quantity which gives information about auxetic behaviours is the Poisson’s ratio, ν,
which we have already introduced. Note that, for an isotropic material described in the
context of the Cauchy theory, the value of the Poisson’s ratio ranges between−1 and 0.5,
in order to get a stable elastic material. However, this limit can be exceeded when the
material is not isotropic. When discussing the properties of penta-mode metamaterials,
we saw that they were characterized by ν = 0.5, since they were subject to change of
shape whereas the variation of volume was negligible. In this section, on the contrary,
we will give an account of materials which possess a negative Poisson’s ratio: these are
auxetic materials [23, 44–49].

Let us start with a particular family of isotropic auxetic materials which are called
dilational metamaterials. Their characterizing property lies in the fact that their
Poisson’s ratio is equal to −1, with the immediate consequence that the ratio of the
bulk modulus to the shear modulus is close to 0. Therefore, their volume can be
easily modified without altering their shape: this is the reason for the name dilational
metamaterials. From a certain point of view, they show an opposite behaviour with
respect to penta-mode metamaterials which we have previously introduced. Indeed,
they can be considered as uni-mode extremal metamaterials where dilation is the easy
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Figure 2.2 Left: the fundamental cell constituting a dilational metamaterial, sketched on
the right. It is composed of several elastic and rigid elements interconnected by hinges.
Relative movements of these elements produce the global dilational behaviour.

deformation mode. One of the first microstructures with a Poisson’s ratio close to
the value ν = −1 was proposed by Almgren in 1985 [50] and it was composed of
a sequence of sliding collars interconnected by springs. Later, in 2013, Milton [25]
proposed a microstructure for a planar uni-mode dilational metamaterial made up of
a central square plaquette whose vertices are connected by pivots to four rigid bars
(see Fig. 2.2). By assembling six planar cells to form a cube, one gets a fundamental
cell which can be arranged in a three-dimensional array behaving as a dilational meta-
material. Bückmann et al. [24] have investigated the properties of this structure both
from a theoretical and an experimental point of view. Experimental evidence has con-
firmed theoretical predictions, showing an isotropic Poisson’s ratio consistent with the
expected one.

Dilational metamaterials are also known as ‘ideal’ auxetic materials, since transverse
strain and axial strain have the same sign and the same value. However, it is not yet
clearly understood if microstructures with a dilational behaviour can be obtained via
a prescribed limiting procedure starting with an auxetic metamaterial with negative
Poisson’s ratio different from −1.

In the rest of this section, we shall present an overview of the vast landscape of
proposed microstructures which are available in the literature[51, 52]. In particular,
one can collect these models into three families: re-entrant structures [53, 54], chiral
structures [55, 56], and assembly of rigid and semi-rigid rotating elements [57, 58].

Let us start with the structure proposed by Gibson et al. in 1982 [53]: it is a bi-
dimensional array made up of re-entrant honeycombs (see Fig. 2.3). The auxetic
behaviour is due to the fact that, under a tensile load, the re-entrant hexagons composing
this microstructure, tend to increase their areas since the ribs delimitating the cell are
forced to align. This kind of pattern can also be extended to the three-dimensional case
[20]. After this pioneering work, other re-entrant honeycombs have been investigated
such as, for instance, cellular structures with arrow-shaped or star-shaped building
blocks. Also in this case, the motion of the cell ribs under a tensile load generates a
positive variation of the transverse strain, resulting in a metamaterial with a negative
Poisson’s ratio.
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Figure 2.3 Re-entrant honeycomb lattice. Under a tensile load, the movement of the ribs forming
the cells produces an increment of dimension in the directions transverse to the one of the load.

Figure 2.4 Microstructures made up of rigid rotating constituents: different types of squares
(a) and rectangles (b).

Some years after the work by Gibson, in 1987, Lakes investigated the auxetic
behaviour of manufactured polyurethane foams [18]. The realization procedure of these
foams is very involved and requires several steps. First of all, a thermo-mechanical
process compresses the open cell foam into a mould; then the mould is heated to a tem-
perature just above its softening point; finally, the foam is cooled down and undergoes a
controlled relaxation up to the final form. Also in this case, the unit cell composing the
foam has some re-entrant ribs which tend to move out when the elements of the neigh-
bouring cells are subject to tension. However, for this kind of structure, geometrical
arguments are not sufficient to explain their auxetic behaviour and one has to take into
account the mechanical properties of the constituents, such as flexure and stretching.

A second class of microstructures which has been investigated to create auxetic meta-
materials consists in an assembly of rigid or semi-rigid units [59] which can rotate
around some connecting pivots, as shown in Fig. 2.4. A lot of different element shapes
have been proposed, such as triangles, rhombs, squares and parallelograms [60–63].
These structures show a plethora of possible Poisson’s ratio depending on the arrange-
ment of components: in some cases one can obtain ideal dilational metamaterials, in
other cases one can obtain a highly variable Poisson’s ratio, ranging from negative to
positive values. Generalizations in which the rigidity hypothesis is relaxed have been
also proposed, see [64, 65].

So far we have limited discussion to bi-dimensional designs. A three-dimensional
model which also takes account of out-of-plane deformations has been proposed by
Alderson and Evans [66]. They extended the planar model with rotating rigid squares
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Figure 2.5 An example of chiral microstructure: circles represent cylinders, whereas curves
interconnecting the circles are flexible ligaments. When the cylinders rotate, the ligaments move
producing a global auxetic behaviour.

and rectangles to the three-dimensional case, in order to model the auxetic behaviour of
α-cristobalite.

The third family of microstructures we are going to illustrate are called chiral struc-
tures. The name is suggested by the presence of axes of rotation which give to the
fundamental units a clockwise or counterclockwise orientation.

A typical cell of an auxetic chiral structure is shown in Fig. 2.5: it is made up of cylin-
ders set at the vertices of a bi-dimensional lattice. These cylinders are interconnected by
means of flexible elements, which are called ligaments. Cylinders start to rotate when
subject to external loads and, consequently, the ligaments wrap around them producing
a transverse strain of the same sign as the axial one. Different lattices and ligaments
have been investigated (see [55, 67, 68]): the most studied structure involves hexachiral
elements„ where the lattice has hexagonal symmetry.

From the manufacturing point of view, one has to remark that it is possible to realize
these structures not only by means of additive systems, like 3D-printing, but also by glu-
ing ligaments to cylinders: the glue seems to influence only the Young’s modulus of the
resulting metamaterial, while the Poisson’s ratio does not depend on it [69]. Recently,
three-dimensional chiral structures have also been proposed, see for instance [70].

Mechanisms Determining Negative Constitutive Parameters
The majority of books presenting classical Cauchy continuum models, stress that sta-
bility arguments dictate that the elasticity tensor is positive definite. Consequently, the
constitutive coefficients which we have already introduced, bulk and shear modulus,
should be positive. Even if these positivity requirements have been considered as a
fundamental pillar of first gradient elasticity, some experimental evidence has recently
shown the existence of materials, which, under special circumstances, behave in a way
which can be better described using models with negative constitutive parameters. In
particular, in the context of Cauchy elasticity, constraints can deeply affect this positivity
property. Lakes and Wojciechowski, for instance, have shown that constrained materials
can be stable in spite of negative moduli [71]. Indeed, when constraints are present, a
stable and unique solution exists if the problem is strongly elliptic, a condition which is
satisfied for the following ranges of constitutive parameters [71]:

−∞ < E < ∞ − 4

3
G < B < ∞ .



A Review of Some Selected Examples of Mechanical and Acoustic Metamaterials 59

For the sake of completeness it has also to be noted that there are some research
groups working on possible unconstrained materials which can be described using
negative moduli.

Negative Stiffness
Springs are one-dimensional mechanical elements which tend to come back to their sta-
ble undeformed configuration after the imposition of some displacement in both exten-
sion and compression. Stiffness is the ratio of the force needed to impose a displacement
to the displacement itself and this definition can be extended to higher dimensional
elasticity theories. Indeed, if one considers a three-dimensional continuum body, the
Young’s modulus, which we have already introduced as the ratio of the force per unit
area to the axial strain, is a measure of the axial stiffness, whereas the shear modulus is a
measure of the torsional (around an axis) stiffness (these properties in general depending
on the axes chosen for their computation).

We are now going to introduce a very simple mechanical system which exemplifies
one of the mechanisms which leads to negative stiffness (see [72, 73]). This system
is called a Von Mises truss and it comprises two rods of length d0 interconnected via a
hinge to a vertical spring, whose undeformed length is x and stiffness is K (see Fig. 2.6).
We call β0 the angle formed by the rods and the horizontal axis in the undeformed
configuration. By applying a force P to the connecting node along the vertical direction,
the spring undergoes a vertical displacement u whereas the new configuration of the rods
is characterized by a length d and an angle β with respect to the horizontal axis. In this
configuration the force P can be computed and one obtains the following expression:

P = 2σA sinβ +Ku , (2.1)

where σ is the tension and A is the area of the cross-section of the rod. By assuming
linear elastic behaviour for the rod, we have that σ = Eε (Fig. 2.7(left)), where E

denotes the Young’s modulus of the rod, and ε is the axial strain, which is related to the
parameters of the current configuration via the following expression:

ε = d0 − d

d0
= 1− cosβ0

cosβ
. (2.2)

Figure 2.6 A Von Mises truss.
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Figure 2.7 Left: the relation between the stress, σ, and the strain ε; right: the load, G, vs
displacement, u.

Using the relation u = d0 cosβ0 (tanβ0 − tanβ), one can replace β with a certain
function of u and β0 which can be inserted in the equation for P . Eventually, one obtains
the following result:

P = 2EA (d0 sinβ0 − u)

(
1√

b2 + (d0 sinβ0 − u)2
− 1

d0

)
+Ku , (2.3)

where b = d0 cosβ. One can plot the function P using the displacement u as the
independent variable and, for typical values of the constitutive parameters d0, β0, K ,
one gets diagrams resembling that shown in Fig. 2.7(right).

Microstructures which try to exploit this snap-through mechanism have been pro-
posed, for instance, in [76]. The unit cells are honeycombs which can suddenly undergo
a buckling under a compressional load, because some non-straight elements delimiting
cells suddenly pass to a buckled configuration.

As a final remark, note that it is possible to build composite structures comprising
materials with both positive and negative stiffness. By choosing a suitable design, where
a matrix made up of a material with positive stiffness constrains an embedded negative
stiffness material component, one can realize metamaterials with the main advantage
of being characterized by concurrent high values of stiffness and damping ratio [75,
78, 79]. The damping ratio is a parameter which gives information about the capability
of a dynamical system to damp its oscillatory motions following a disturbance around
an equilibrium configuration. Stiffness and damping ratio are two properties which are
crucial to designing performance structures in engineering applications. Indeed, a high
value of the stiffness reduces deformation whilst a high value of the damping ratio is
necessary to control the dynamical response of the system. However, for materials which
are usually used in present day engineering, these two properties seem to be mutually
exclusive: as the stiffness increases, the damping ratio decreases and vice versa. There-
fore, these positive–negative stiffness composite materials could be fruitfully exploited
in engineering applications for vibration isolation and seismic protection [80–82].
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Figure 2.8 A representation of the lattice formed by methanol monohydrate after crystallization.
The elements of a water chain are interconnected by single lines, whereas the hydrogen bonds
between two water chains are represented by two lines.

Figure 2.9 Two microstructures which produce metamaterials possessing negative
compressibility: on the left a hexagon lattice, on the right a wine rack lattice.

Negative Compressibility
Negative compressibility has also been investigated in the literature [26, 71, 83, 84].
Negative compressibility is exhibited by crystalline methanol monohydrate, which has
been studied by Fortes et al. [85], but has not been purposely designed for having
such property. Methanol monohydrate crystallizes in an orthorhombic lattice with four
molecules per unit cell. The structure consists of water–water chains, linked by ordered
hydrogen bonds, which cross-link methanol–water chains via disordered hydrogen
bonds (a schematic diagram of the structure is shown in Fig. 2.8). This material shows
not only negative compressibility, but also negative and anisotropic thermal expansion.

Attempts have been made to synthesise microstructures which exhibit a global
behaviour described by means of negative compressibility. Some lattices showing
this property have been proposed in literature. Two of the easiest examples realizing
such behaviour, which have been presented in [86], are bi-dimensional lattices with
hexagonal and wine rack unit cells, see Fig. 2.9. These microstructures could be
realized via networks of beams interconnected through suitable mechanical elements,
such as (flexural) hinges. The authors also extended their considerations to three-
dimensional solids, proposing a structure which exhibits both negative Poisson’s ratio
and negative compressibility [87]. A different approach has been followed in [88]. Here
the authors show that negative compressibility can be obtained in specific body-centered
or face-centered tetragonal networks of vertices interconnected by beams. In order to
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Figure 2.10 A porous microstructure formed by beams made up of materials with different
properties. The combination of these different behaviours produces a global structure
characterized by negative compressibility.

show this property, both simulations based on finite element techniques and analytical
computations have been performed. Finally, it is worth mentioning also the work in
[89], where negative compressibility has been studied in systems comprising materials
with different mechanical properties. These materials are arranged in order to form a
porous microstructure, which is shown in Fig. 2.10. This example is interesting since the
proposed material has negative constitutive coefficients even if it is unconstrained. The
basic mechanism is simple: beams made up of two different materials glued together
connects the vertices of a lattice. Under pressure these bimaterial beams tend to bend,
and the material undergoes a global expansion, showing negative compressibility.

Tissue-inspired Metamaterials: Mechanical Behaviour
of Fabric Microstructures
One of the tissue-inspired microstructures which have been recently proposed, and
whose mechanical properties seem promising for engineering purposes, is the so-
called pantographic lattice [29]. This material possesses a characteristic microstructure
arrangement which strongly determines its global mechanical properties. A panto-
graphic lattice is made up of two parallel layers of rectilinear (this property can be
relaxed, parabolic fibres have been considered in the literature for instance) parallel
fibres with different orientation: the fibres in one layer are orthogonal to fibres in the
other. Hinges1 connect fibres belonging to different layers at their intersection points,
resulting in a highly compliant structure with mechanical properties which cannot be
described at macro-scale by means of traditional Cauchy continuum theory. An SLS 3D
printed polyamide specimen is shown in Fig. 2.11.

One of the possible applications involving tissue-inspired microstructures is fibre-
reinforcement for structural matrices and the development of biologically compatible
tissues.

Foldable Microstructures and Origami-based Metamaterials
The word origami denotes the ancient Japanese art of folding sheets of paper in order
to produce three-dimensional objects with a given shape, for instance a bird. During the

1 Or small cylinders which are meant to mainly twist about their axes; clearly there are situations in which
shearing of such cylinders might be non-negligible.
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Figure 2.11 A plastic pantographic sheet manufactured via a 3D-printing process: the magnified
area shows more clearly the tissue-inspired microstructure. There are two families of fibres
interconnected via small cylinders called pivots.

80s, a proposal to create materials based on foldable unit cells using typical origami
techniques was put forward [94] and then further developed [95–97]. One of the main
applications involving these metamaterials was related to solar panel packaging for
space missions. Although they have been considered technologically infeasible for more
than twenty years, origami-based metamaterials are nowadays in manufacture and many
research groups are working on them, trying to efficiently describe their mechanical
properties.

Several different structures have been proposed in the literature based on the periodic
repetition in a bi-dimensional array of a foldable unit cell. As far as mechanical proper-
ties are concerned, it is worth analyzing two different origami patterns: one is based on
a Miura-ori cell and the other is the so-called egg-box tessellation.

Let us start with the Miura-ori scheme which was introduced by Miura [94] in order
to find an efficient way for packaging and deploying sheets made up of solar panels for
space missions. This kind of tessellation is also present in many natural systems like
leaves, or embryonic intestine and in general they can be observed in bi-dimensional
deformed surfaces subject to biaxial compressions. In Miura’s pioneering work the
aforementioned engineering problem (packaging of solar panels) was related to the
geometrical problem of finding a transformation which is able to map a flat sheet into
a folded one. The solution which was proposed amounts to considering a developable
double corrugated surface, obtained via the repetition in a bi-dimensional array of a
fundamental cell as represented in Fig. 2.12. Developability means that the surface can
be rigidly mapped into a flat plane. Since the mechanical properties of this structure
are a consequence of its geometry, this system is scale invariant, which means that its
mechanical behaviour is not related to some characteristic length of the microstructure.

The fundamental cell is made up of four congruent parallelograms, each one char-
acterized by the lengths of its two sides l1, l2 and one angle α (the other angle β is
its supplemental), sharing one common vertex. The four parallelograms are disposed in
such a way that the sum of the four angles which meet at one vertex is 2π, which is
exactly the condition for having a developable surface. Furthermore, the edges of the
parallelograms form a re-entrant lattice. The geometry of this tessellation pattern can be
described in terms of four parameters: two lengths, l1 and l2, and two angles, α and δ,
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Figure 2.12 The fundamental cell of a Miura-ori tessellation. There are four parallelograms which
are folded as shown in the picture on the right.

Figure 2.13 The parameters characterizing the fundamental cell of a Miura-ori tessellation.

where δ is the angle between the flat plane and one of the parallelograms in the folded
configuration (see Fig. 2.13). Therefore, one can write the following relations:

a = l1 sin δ sinα,

b = l2
cos δ tanα√

1+ cos2 δ tan2 α
,

p = l1

√
1+ cos2 δ tan2 α,

q = l2
1√

1+ cos2 δ tan2 α
.

(2.4)

Let us now analyze the possible deformations of the fundamental structure. In particu-
lar, we have to distinguish between in-plane and out-of-plane deformations (we consider
in-plane and out-of-plane deformations with respect to a flat sheet passing through the
valley and mountains, i.e. a plane surface resulting from the average of the mountain
and valley array). As far as in-plane deformations are concerned, the behaviour of the
system is described by the in-plane (referred to as the xy plane) Poisson’s ratio:

νin = −εp

εb
= − b

p

dp

db
= − tan2 ξ = − S2

V 2
.
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From this expression one immediately notices that the in-plane Poisson’s ratio is always
negative and depends only on the in-plane angle ξ. The auxetic behaviour of this tessel-
lation makes possible an efficient packaging and deployment of the system. Indeed, a
Miura-ori textured sheet can be packaged just by pushing two opposite end points and
unfolded by pulling them back in the reverse direction.

When one considers out of plane deformations, a different behaviour can be noticed.
Firstly, these deformations can occur only if the facets of any cell start bending. Then,
experimental evidence has proved the existence of two low-energy deformation modes:
twisting and saddle modes. The latter is a typical behaviour associated with positive
Poisson’s ratio, with respect to out-of-plane deformations. Therefore Miura-ori tessel-
lations are characterized by a negative in-plane and a positive out-of-plane Poisson’s
ratio.

In order to describe the behaviour of these metamaterials, we will consider the sim-
plified mechanical system introduced by Schenk and Guest in [98, 99], which replaces
the sheet with a system of bars interconnected via spherical pin-joints. Of course, other
descriptions are possible: for instance one could model the whole sheet as a thin shell
and use finite element methods to find the possible deformed configurations, or only
consider facets moving rigidly. However, the model which we will consider is a good
compromise between the limitation of rigid motions and a detailed microscopic analysis
based on finite elements. The pin-joints are located at the vertices of each parallelogram
while the bars are along the edges. Additional bars are inserted along the shorter diago-
nal of the parallelogram, in order to approximate the bending of the facets.

Therefore, the original problem has been replaced with a simplified one which is well
known in structural mechanics. There are three governing equations in the linear regime:

Nτ = f, (2.5)

V u = ε, (2.6)

Rε = τ , (2.7)

where N is the so-called equilibrium matrix, which express the relations between the
internal tension of the bar, τ , and the forces applied at the vertices, f. V = NT is the
compatibility matrix which connects the displacements of the nodes, u, to the elonga-
tion of each bar, ε. Eventually, the third equation represents the constitutive relation
containing the material stiffnesses of the bars along the diagonal. The bending of the
facets is described by means of the folding angle β between two adjacent tiles, which
can be expressed in terms of the positions of the vertices composing a cell. Referring to
Fig. 2.14, one can write

sinβ = 1

sin(γ) sin(θ)

1

|e3|3 · |e1| · |e2| (e3 × (e2 × e2)) · (e3 × e1).

The differential of this constraint makes it possible to linearly relate the angle dβ

to the displacements of the vertices and therefore one obtains a second compatibility
condition which can be written as follows:

Cu = dβ,



66 E. Barchiesi, F. Di Cosmo, M. Laudato

Figure 2.14 Showing the additional beam which is introduced to describe the folding of each
parallelogram.

where dβ is the vector collecting all the folding angles among adjacent facets.
From Eqs. (2.5)–(2.7) the following expression is easily derived for the stiffness

matrix:

Ku = V T RV u = f . (2.8)

One can extend this relation in order to include also the other compatibility condition
in such a way that an extended stiffness matrix can be written as:

K = V T RV + CT RCC ,

where RC includes the stiffnesses of the edges (Kedge) and the facets (Kfacet).
Eigenvalues and eigenvectors of this matrix describe the eigenmodes of the sys-

tems. Furthermore, the kernel of the compatibility matrix V represents the space of
displacements which provide zero bar elongation. These modes are called mechanisms.
By considering suitable boundary conditions it is possible to show that the space of
mechanisms is three-dimensional and contains exactly the deformation modes which
were previously described: planar, saddle and twisting modes. For these configura-
tions, it is possible to compute also the ratio of the unit cell curvatures, which is the
out-of-plane coupling coefficient νout. In [98] the analysis is performed in detail for the
saddle mode and the final result is that the out-of-plane coupling coefficient is equal and
opposite to the in-plane Poisson’s ratio.

This simplified model has some limitations as, for instance, shear deformations can-
not be described according to it. More detailed models have to be applied, which, for
instance, contain a larger class of possible deformations of any constituent, or it may be
necessary to adopt a shell model, as already discussed.

Three-dimensional metamaterials obtained by stacking several layers of origami
sheets have been proposed and analyzed in many recent works [100]. Several applica-
tions have been put forward for origami-based metamaterials, for instance they could
be employed for building medical stents or programmable materials [22, 101].

A different origami-based material can be obtained by means of the so-called egg-
box tessellation pattern (see Fig. 2.15). The pattern is obtained by alternating pyramids
with a quadrilateral base which have two opposite orientations. This structure cannot be
obtained by suitably folding a flat sheet, since the sum of the angles at each vertex is
less than 2π and consequently the Gaussian curvature of the surface is different from
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Figure 2.15 A sheet folded according to an egg-box pattern.

zero. From the point of view of mechanical properties, this pattern presents a positive
in-plane Poisson’s ratio, whereas the out-of-plane coupling coefficient has the opposite
sign. In other words, the egg-box pattern has an opposite behaviour with respect to
Miura-ori tessellation. However, the previous model can be applied also in this case and
the results of the analysis are shown in [99].

Homogenization Techniques Applied to Origami-based Microstructures
In this sub-section we will illustrate the approach proposed by Nassar et al. [102] in
order to deal with the problem of finding the surfaces which can be tesselated via an
egg-box pattern, in the limit for the characteristic length of every pyramid going to zero.
The proposed solution involves techniques similar to those used in two-scale asymptotic
homogenization processes, where the result of the limiting procedure is a continuous
model.

Let us start with the deformation of a single pyramid forming the egg-box pattern,
as shown in Fig. 2.16, whose characteristic length (the dimension of the edge of the
pyramid) is r . Each pyramid can undergo one deformation mode which is described by
α, one of the angles of its quadrilateral base. The other angle which characterizes the
mode is α∗ and it is related to α by the following relation:

2 cos
(α

2

)
cos

(
α∗

2

)
= 1 .

Let us now consider a periodic array made up of alternating pyramids, oriented in
two opposite directions. If one knows the positions of all the vertices disposed along
two consecutive diagonals of the structure it is possible to construct the whole set of
vertices of the periodic structure. Therefore a configuration of the egg-box tessellation
is parameterised by two families of vectors, A = {an} and B = {bn}, connecting the
vertices on the two chosen diagonals. On the other hand, because of the periodicity of
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Figure 2.16 A basic pyramid of an egg-box tessellation. The parameters which characterize the
structure are the length of the edges, r , and the folding angles α and α∗, which, however, are not
independent.

the array, one can represent the pattern by means of a set of equivalent vertices, denoted
by Vi,j , all disposed on the same plane.

The problem which has been described in [102] is the fit of a surface � by means
of a suitable egg-box tessellation. The fit is built as follows. First of all, one point
M ∈ � is chosen: it coincides with one vertex of the egg-box. A portion S(M) ={
Vi,j , A(M), B(M)

}
of this egg-box is deformed in order to fit a small neighbourhood

of M on the surface �. The same procedure is extended to the other points of the surface
and the local egg-boxes are all glued together in order to obtain a single tessellation.
Then, we consider the rescaled egg-box rSr (M) = {

rVi,j (Ar (M), Br (M))
}
, and it will

once more fit a small neighbourhood of the point M ∈ �. This procedure, repeated for
all the points of the surface, will produce a rescaled fit. Eventually, one takes the limit
for r → 0. As we have already anticipated, this procedure is analogous to the two-scale
asymptotic expansions typical of homogenization procedures (see for instance [103]),
where there is a slow-varying variable, the point M in this case, and one fast variable,
the one characterizing the egg-box.

Let us now consider the fitted neighbourhood rSr (M) of a point M . As r → 0, the
egg-box converges to a single point and we require that the finite differences between
two subsequent vertices tend to a basis for the tangent space to � at the point M ,
independently of the pair (i, j ). We can write this condition as follows:

rVi+1,j − rVi,j

r
→r→0 ∂xθ(x, y) ≡ θx(x, y), (2.9)

rVi,j+1 − rVi,j

r
→r→0 ∂yθ(x, y) ≡ θy(x, y), (2.10)

where we have supposed the existence of a smooth parameterisation θ(x, y) of the
surface � and the pair (x, y) labels the point M (see Fig. 2.17). In order to find some
conditions according to which a surface can be tessellated via the previous procedure,
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Figure 2.17 A series showing the kinematical characteristics of the homogenization procedure for
an egg-box tessellation. On the left a set of equivalent vertices in the neighbourhood of Vi,j . The
figure in the centre represents the homogenized limit with the tangent vector θx and θy , and the
unit vectors a0 and b0. On the right the effect of the rescaling in r.

we go on to consider the metric and the second fundamental form. The components of
the metric tensor can be written in terms of the tangent vectors as follows:

G(x, y) =
( 〈θx(x, y), θx(x, y)〉 〈

θx(x, y), θy(x, y)
〉〈

θy(x, y), θx(x, y)
〉 〈

θy(x, y), θy(x, y)
〉 ) , (2.11)

where the brackets denote the Euclidean scalar product in R
3. Because of the periodicity

of the structure, the limiting families of vectors A0(M) and B0(M) will be described in
terms of a single degree of freedom, i.e. the angle α(x, y) which is one of the inter-
nal angles of the deformed pyramid. In terms of this angle, the metric tensor can be
expressed as follows:

I (α) =
(

4 sin2 (α
2

)
0

0 4 sin2
(
α∗
2

) )
. (2.12)

From this expression the in-plane Poisson’s ratio is very easily computed, which can
be written in terms of the following relation:

νin = −
sin

(
α
2

)
sin

(
α∗
2

) d sin
(
α
2

)
d sin

(
α∗
2

) = tan2
(
α∗
2

)
tan2

(
α
2

) . (2.13)

We remark that it is a positive quantity, in contrast to the auxetic in-plane behaviour of
the Miura-ori tessellation.

Let us now consider the second fundamental form of the surface �. It involves the
second derivative of the parameterisation θ and, therefore, it can be approximated by
using second-rank finite differences. In particular as r → 0 one requires that these
quantities approach the second-order partial derivatives of the parameterisation, i.e.

�xxrVi,j

r2
→r→0 φxx(x, y), (2.14)

�yyrVi,j

r2
→r→0 φyy(x, y), (2.15)

�xyrVi,j

r2
→r→0 φxy(x, y), (2.16)
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where �ij is the second-rank finite difference operator. To the first order in the scal-
ing parameter r , this set of equations can be written as a linear system in the first-
order corrections to the set of vertices of the limiting egg-box pattern. In particular, the
independent corrections form a set of five degrees of freedom, which are illustrated in
Fig. 2.17:

• δα is the variation of the angle α(x, y) between the vectors A0(M) and B0(M);

• the vector δa, which is orthogonal to the vectors a0
n(M) ∈ A0(M) and corrects

them;

• the vector δb, which is orthogonal to the vectors b0
n(M) ∈ B0(M) and corrects

them.

As far as curvatures are concerned, there is no dependence on the correction δα and
one can actually write:

θ(2) = QδV , (2.17)

where θ(2) is the vector containing all the second derivatives of the parameterisation and
δV is the vector containing the corrections δa and δb.

In addition to this set of equations, there are five compatibility conditions which the
second order derivatives have to satisfy: four of these conditions involve the Christof-
fel symbols of the Levi-Civita connection of the metric tensor I (α), whereas the last
condition involves the out-of-plane Poisson’s ratio. Indeed, one has that

νout = −kx

ky

.

If one considers the second fundamental form of the surface:

R =
(

L M

M N

)
=
( 〈

θxx , n̂
〉 〈

θxy , n̂
〉〈

θxy , n̂
〉 〈

θyy , n̂
〉 ) , (2.18)

where n̂ is the positive normal to the surface, one can write the two curvatures kx and
ky according to the following formulas:

kx = L

||θx ||2 , ky = N

||θy ||2 . (2.19)

Therefore, one has that the second derivatives have to satisfy the constraint:

νout = −
tan2

(
α∗
2

)
tan2

(
α
2

) = −νin .

Note that, again, the tessellated surfaces have an out-of-plane Poisson’s ratio which is
opposite to the in-plane Poisson’s ratio.

Since the second order derivatives satisfy these five additional linear compatibility
relations, they belong to the rank of the matrix Q.

In short, one can state that if a surface � can be fitted asymptotically via an egg-
box pattern, then there exists a parameterisation θ of � and two functions α and α∗
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satisfying 2 cos
(
α
2

)
cos

(
α∗
2

)
= 1 such that metric tensor and second fundamental form

assume the form written in Eqs. (2.12) and (2.18), with the compatibility condition

L = N
cos2

(
α
2

)
cos2

(
α∗
2

) . (2.20)

An equivalent solution can be given if one replaces the parameterisation θ with a set
of three functions (L, M , N ) satisfying the Gauss–Mainardi–Codazzi equations. This set
of PDE has the following form:

LN −M2

16 sin2(α/2) sin2(α∗/2)
= − 1

8 sin(α/2) sin(α∗/2)

[(
(sin2 (α∗/2))x

sin (α/2) sin (α∗/2)

)
x

+
(

(sin2 (α/2))y
sin (α/2) sin (α∗/2)

)
y

⎤
⎦

Ly −Mx =
(
sin2(α/2)

)
y

2 sin2(α/2)
L+

(
(sin2(α∗/2))x
2 sin2(α∗/2)

− (sin2(α/2))x
2 sin2(α/2)

)
M

+
(
sin2(α/2)

)
y

2 sin2(α∗/2)
N

My −Nx = −
(
sin2(α∗/2)

)
x

2 sin2(α/2)
L+

(
(sin2(α∗/2))y
2 sin2(α∗/2)

− (sin2(α/2))y
2 sin2(α/2)

)
M

−
(
sin2(α∗/2)

)
x

2 sin2(α∗/2)
N

subject to the constraint (2.20).
Therefore, by means of the procedure outlined in this sub-section, we have shown

how to convert the problem of finding a suitable tessellation of a given surface into a
homogenized problem consisting of the search for continuous fields satisfying a spe-
cific set of PDEs. Finding solutions of these equations is not an easy task. A series of
solutions, obtained starting with some symmetry requirements, can be found in [102].

Theory Driven Design: Cauchy Modelling
In this sub-section we will particularly focus on the work by Milton and Cherkaev,
dating back to 1992 [21], aimed at addressing some key questions regarding the syn-
thesis problem of (extremal) metamaterials. Before entering into the details, however,
let us make some general observations on the characteristics which a continuum model
should possess in order to properly describe the properties of extremal metamaterials.

Let χ : B ⊂ E → E be a placement field, and let the pair (E,R3) be the
Euclidean three-dimensional affine space into which the continuum B is embedded.

If F = ∂χi

∂XA ei ⊗ eA is the gradient of the displacement field (lower case index refers
to the current configuration and uppercase index refers to the reference one; this being
a standard notation we omit further explanation), a measure of the deformation of the
body is represented by the second-rank tensor G = 1

2

(
FT F − I

)
. Let p and q be
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two orthogonal material vectors applied to a given point X ≡ (XA) in the reference
configuration of the continuum. In the current configuration they are deformed into the
new vectors Fp, Fq which, in general, are no longer orthogonal: the angle between
them is π

2 − γ. The shear strain with respect to p and q is represented by the angle γ,
which satisfies the following relation:

sin(γ) = cos
(π

2
− γ

)
= Fp · Fq
||Fp||||Fq|| =

qT (2G+ I )p
||Fp||||Fq|| . (2.21)

A Cauchy model describing an extremal metamaterial has to satisfy prescribed rela-
tions. For instance, in the case of dilational metamaterials, where the only possible
deformation is a volume modification which preserves the shape of the system, they
need to have zero shear strain for all pairs of orthogonal material directions. Therefore,
the strain tensor G has to be equal to the identity tensor times a constant number.

Let us now outline the approach advanced by Milton and Cherkaev, which has led to
introducing extremal metamaterials. They have developed their theory in the context of
Cauchy linear elasticity: ‘it is well known that elasticity tensors are positive definite, but
what about the converse question: given an arbitrary positive definite fourth order tensor
C satisfying the usual symmetries of elasticity tensors, is it possible to manufacture
a material with C as its elasticity tensor?’ The answer is affirmative: laminates made
made up of suitably designed layers of two different materials, one very compliant
and the other very stiff, have effective elasticity tensors which can generate all the
thermodynamically admissible elasticity tensors. An alternative solution to the problem,
developed contemporarily but independently, was advanced by Sigmund [104], but his
approach was based on numerical techniques. It is worth remarking that, since the whole
description is confined to the linear regime, some of the presented microstructures can
undergo instability phenomena after some critical loads (whose description is therefore
beyond the scope of the present analysis). For, we will consider only bi-dimensional
elastic continua: the three dimensional case is an almost straightforward generalization.
Following [37], we represent strain and stress tensors in Voigt notation, that is by means
of a three-dimensional vector containing the three independent coordinates of a sym-
metric second order tensor in a bi-dimensional space. Consequently, the elastic tensor
in Voigt notation, is represented via a 3× 3 matrix which relates the vector σ (stress) to
the vector ε (strain), via the following formula:

σ = Cε .

From the positivity and symmetry of the matrix C, one derives that it can be diagonal-
ized via an orthogonal matrix Q and its eigenvalues will be all positive, i.e.

C = QT

⎛
⎝λ1 0 0

0 λ2 0
0 0 λ3

⎞
⎠Q .

Eigenmodes of C corresponding to very small (with respect to others) eigenvalues
are called easy modes or strains; if the eigenvalue is actually zero they are usually called
floppy modes. Corresponding to the number of easy modes, extremal metamaterials
are divided into null-mode, uni-mode, bi-mode and tri-mode materials, as discussed
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Figure 2.18 Oblique box metamaterial made up of alternating layers: white parts are a stiff
component, whereas dotted areas are a compliant one. The angle α parameterises the structure
by specifying the inclination of the small stiff plates immersed in the compliant matrix.

previously. If one considers three-dimensional elasticity, one can have up to six easy
modes. As already stated, we will limit our analysis to plane strain elasticity. In partic-
ular, we will provide a detailed description of how to design uni-mode metamaterials
with Poisson’s ratio close to ν = −1. Analogous ways of reasoning, indeed, lead to
bi-mode metamaterials, as shown in [37]. Before concluding the current sub-section,
however, we discuss how these metamaterials allow for the generation of the whole set
of admissible, i.e. positive definite, elasticity tensors.

Let us consider the microstructure shown in Fig. 2.18, also called an ‘oblique box’
microstructure. It is a laminated composite made up of several horizontal layers: the
white stripes are a stiff material, whereas the dotted regions are a compliant material.
There are two types of alternating layers: one is made up only of stiff material, the other
one contains an array of stiff plates embedded in the compliant phase and arranged so as
to form an angle α with respect to the horizontal axis. This is an example of a uni-mode
material with the easy mode represented by the following strain tensor:

a

(
0 − sinα

− sinα 2 cosα

)
, (2.22)

where a is an arbitrary constant. The limiting cases – α varies between 0 and π
2 – are

represented by the following strains:(
0 0
0 −2a

) (
0 −a

−a 0

)
. (2.23)

Applying a rotation to (2.22) one can obtain all the uni-mode materials with an easy
strain represented by the matrix (

εxx εxy

εxy εyy

)
(2.24)

with non-positive determinant. In particular, by starting with a given matrix ε of the
form: (

εξξ εξη
εηξ εηη

)
, (2.25)
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the rotated one can be obtained by means of the following transformation rule:(
εxx εxy

εxy εyy

)
= RT

(
0 εξη
εηξ εηη

)
R , (2.26)

where R is a given rotation matrix depending on an angle ϑ. Therefore, the resulting
equation can be written as follows:(

εxx εxy

εxy εyy

)
=
( −εξη sin(2ϑ)+ εηη sin2(ϑ) 1

2

(
2εξη cos(2ϑ)− εηη sin(2ϑ)

)
1
2

(
2εξη cos(2ϑ)− εηη sin(2ϑ)

)
εηη cos2(ϑ)+ εξη sin(2ϑ)

)
.

However, there are still some missing uni-mode materials. Indeed, all the materials
with easy strain possessing a positive determinant are not described by this scheme.
Among these uni-mode materials there are also dilational metamaterials, where the easy
strain is proportional to the identity. In order to obtain such a family, let us consider again
the “oblique box” in Fig. 2.18 and let us mirror it with respect to a plane orthogonal to
the horizontal lattices. The new strain, therefore, will be written as follows:

ε(I ) =
(

εxx −εxy

−εxy εyy

)
. (2.27)

If we now slice both the original and the mirrored material, we can form a new com-
posite by rotating the slices and arranging them in such a way that the stiff layers
create a herringbone pattern, with the re-entrant ribs typical of an auxetic behaviour.
An illustration of the resulting microstructure is shown in Fig. 2.19.

The easy strain of the resulting composite can be expressed as the sum of the average
of strain ε and the strain ε(I ), i.e. one gets the following expression:

ε′ =
(
ε+ ε(I )

)
2

=
(
εxx 0
0 εyy

)
. (2.28)

Figure 2.19 A uni-mode metamaterial whose easy mode has negative determinant: slices of an
“oblique box,” suitably arranged, produced this laminate with a herringbone pattern.



A Review of Some Selected Examples of Mechanical and Acoustic Metamaterials 75

Consequently, a suitable choice of the parameters α,ϑ, c, makes it possible to obtain
easy strain proportional to the identity. Eventually, the condition εxx = εyy can be
written as follows:

−2εξη sin(2ϑ) = εηη cos(2ϑ) .

Second Gradient Models for the Macroscopic Description
of Microstructured Materials
Second gradient continua, i.e. continua whose deformation energy depends on the sec-
ond gradient of displacement (or, equivalently, of placement), may arise in the homog-
enization process of microstructured materials, thus describing the emerging behaviour
of such systems at macro-scale. There are many examples of second gradient materials
which can be obtained as homogenized limits of suitable microstructured metamaterials
[115–122]. A paradigmatic example is given by pantographic lattices. Here we will
review an approach firstly introduced for such structures in [123] and subsequently
investigated in [133, 200] (in such works modelling at micro-scale – i.e. the Hencky-
type spring model presented here and a more refined Cauchy one – and at macro-
scale as derived by homogenization have been compared, see also Fig. 2.22). Starting
from a discrete Hencky-type micro model, a 2D continuum macro-model is derived
in this appproach via suitable heuristic micro–macro identification procedures. Trying
to comply with the experimental evidence reported in [123] and in [51], extension of
fibres is taken into account by connecting adjacent material particles belonging to the
same fibre-direction with extensional springs at micro-scale.

Micro Model
To account for the fact that such materials show two favoured material directions we
introduce a Lagrangian Cartesian orthonormal coordinate system whose associated basis
of unit vectors is (D1, D2), constituted by two orthonormal vectors which represent
the directions of the families of fibres constituting the pantographic structure in the
reference configuration.

In such a configuration the lattice body points are located at the positions

Pi,j = (iε, jε), i = 0, 1, . . . , N and j = 0, 1, . . . , M , (2.29)

and pi,j denotes the current configuration position of the body point placed at Pi,j in the
reference configuration. The body points at the nodes Pi,j are connected by extensional
springs along each of the coordinate lines (see Figs. 2.20 and 2.21) and their deformation
energies depend on the distances between adjacent contiguous points in the current
configuration, i.e. on the distance between pi,j and pi,j+1 for those fibres parallel to
D1 in the reference configuration and on the distance between pi,j and pi+1,j for those
fibres parallel to D2 in the reference configuration. The first kind of extensional spring
is characterized by the stiffness K1

i,j and the second kind by the stiffness K2
i,j . Such

extensional stiffnesses are related to the extensional behaviour of the two families of
fibres. As mentioned before, at each node there are also three rotational springs whose
deformation energies depend respectively on the angles.
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Figure 2.20 Reference and deformed configurations for micro-model of a pantographic sheet with
a detail of the three rotational springs employed [123].

Figure 2.21 Hencky-type discrete micro-model of a pantographic sheet: kinematics [123].

1. ϑ1
i,j formed by the vectors pi−1,j − pi,j and pi+1,j − pi,j ,

2. ϑ2
i,j formed by the vectors pi,j−1 − pi,j and pi,j+1 − pi,j ,

3. ϑ3
i,j formed by the vectors pi,j+1 − pi,j and pi+1,j − pi,j .

Thus, such a discrete model can be regarded as obtained by hinging at their inter-
section points two orthogonal families of straight discrete Elasticae. The postulated
deformation energy for the micro Lagrangian discrete system having its configuration
specified by the set of Lagrangian parameters {pi,j } is

U ({pi,j }) =
∑
j

∑
i

k1
i,j

2
(‖pi+1,j − pi,j‖ − ε)2 +

∑
j

∑
i

b1
i,j (cosϑ1

i,j + 1)

+
∑
j

∑
i

k2
i,j

2
(‖pi,j+1 − pi,j‖ − ε)2 +

∑
j

∑
i

b2
i,j (cosϑ2

i,j + 1)

+
∑
j

∑
i

b3
i,j

2

∣∣∣ϑ3
i,j −

π

2

∣∣∣ξ . (2.30)
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It is clear that, on the one hand, the stiffnesses b1
i,j s and b2

i,j s are related, respectively,

to the bending behaviour of the two families of fibres and that the stiffnesses b3
i,j s, on the

other hand, are related to the torsional stiffness of the pivots connecting the two families
of fibers, ξ being a parameter which is equal to 2 in the simplest (materially linear) case.

Macro Model
According to the nomenclature introduced previously, let us now consider a 2D contin-
uum whose reference shape is given by a rectangular domain � = [0, Nε]× [0, Mε] ⊂
R

2. By assuming planar motions, the current shape of � is described by the suitably
regular macro placement χ : �→ R

2. As before, we now have to specify a kinematical
map and we choose pi,j = χ(Pi,j ) ∀i = 1, . . . , N , ∀j = 1, . . . , M .

Assuming that χ(·) is at least twice differentiable at Pi,j s we can perform the follow-
ing second order order approximations:

‖pi+1,j − pi,j‖ = ‖χ(Pi+1,j )− χ(Pi,j )‖ � ε‖F(Pi,j )D1 + ε

2
∇F(Pi,j )|D1 ⊗ D1‖,

‖pi,j+1 − pi,j‖ = ‖χ(Pi,j+1)− χ(Pi,j )‖ � ε‖F(Pi,j )D2 + ε

2
∇F(Pi,j )|D2 ⊗ D2‖,

(2.31)

where F is the deformation gradient ∇χ and the reader is referred to the original papers
[123, 133, 200] for further details.

Equations (2.31) have been used for the homogenization procedure of two addends
of (2.30). In order to address the homogenization of the remaining terms we consider
expressing the cosines of the angles ϑαi,j (α = 1, 2) and ϑ3

i,j as functions of the macro
placement χ. Using analogous Taylor’s approximations to those in (2.31) and neglecting
o(ε2)-terms, we get

cosϑαi,j

=
[−F(Pi,j )Dα + ε

2∇F(Pi,j )|Dα ⊗ Dα
] · [F(Pi,j )Dα + ε

2∇F(Pi,j )|Dα ⊗ Dα
]

‖ − F(Pi,j )Dα + ε
2∇F(Pi,j )|Dα ⊗ Dα‖‖F(Pi,j )Dα + ε

2∇F(Pi,j )|Dα ⊗ Dα‖
(2.32)

≈ cij |α · cij |α − (eij |α · cij |α)2 ε
2

2
− 1 α = 1, 2,

where we defined the vectors

eij |α = F(Pi,j )Dα

‖F(Pi,j )Dα‖ , cij |α = ∇F(Pi,j )|Dα ⊗ Dα

‖F(Pi,j )Dα‖ α = 1, 2.

We have that

cij |α · cij |α − (eij |α · cij |α)2 = cij |α · cij |α − (eij |α · cij |α)(eij |α · cij |α)

= [cij |α − (eij |α · cij |α)eij |α] · cij |α
= cij |⊥ · cij |α = cij |α⊥ · cij |α⊥, (2.33)

where cij |α⊥ is the orthogonal projection of cij |α onto the direction given by eij |α i.e.
cij |α⊥ = cij |α − (eij |α · cij |α)eij |α. Substituting (2.33) in (2.32) we finally get
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cosϑαi,j + 1 ≈ (cij |α⊥ · cij |α⊥)
ε2

2
. (2.34)

We now aim to express the product cij |α⊥ · cij |α⊥ appearing in (2.34) in terms of the
kinematical descriptors of the macro model, i.e. the placement χ:

cij |α⊥ · cij |α⊥ = cij |α · cij |α − (eij |α · cij |α)2

= ‖∇F(Pi,j )|Dα ⊗ Dα‖2

‖Fi,j Dα‖2
−
(

F(Pi,j )Dα · ∇F(Pi,j )|Dα ⊗ Dα

‖Fi,j Dα‖2

)2

.

(2.35)

We are therefore left with the following expression for cosϑαij + 1:

cosϑαi,j + 1

≈

[
‖∇F(Pi,j )|Dα ⊗ Dα‖2

‖Fi,j Dα‖2
−
(

F(Pi,j )Dα · ∇F(Pi,j )|Dα ⊗ Dα

‖Fi,j Dα‖2

)2
]
ε2

2
. (2.36)

In order to recast the micro energy in (2.30) as a function of the kinematical descrip-
tors of the macro model we now try to express ϑ3

i,j as a function of χ. We first compute

cosϑ3
i,j :

cosϑ3
i,j =

[
χ(Pi+1,j )− χ(Pi,j )

] · [χ(Pi,j+1)− χ(Pi,j )
]

‖χ(Pi+1,j )− χ(Pi,j )‖ · ‖χ(Pi,j+1)− χ(Pi,j )‖

≈
F(Pi,j )D1 · F(Pi,j )D2

‖F(Pi,j )D1‖ · ‖F(Pi,j )D2‖ . (2.37)

By substituting (2.37) and (2.36) in (2.30) we get for the deformation energy of the
micro model

U ({pi,j }) =
∑
j

∑
i

∑
α

kαi,j

2
ε2(‖F(Pi,j )Dα + ε

2
∇F(Pi,j )|Dα ⊗ Dα‖ − 1)2

+
∑
j

∑
i

∑
α

bαi,j

[
‖∇F(Pi,j )|Dα ⊗ Dα‖2

‖Fi,j Dα‖2

−
(

F(Pi,j )Dα · ∇F(Pi,j )|Dα ⊗ Dα

‖Fi,j Dα‖2

)2
]
ε2

2

+
∑
j

∑
i

b3
i,j

2

∣∣∣∣arccos

(
F(Pi,j )D1 · F(Pi,j )D2

‖F(Pi,j )D1‖ · ‖F(Pi,j )D2‖
)
− π

2

∣∣∣∣ξ , (2.38)

where o(ε2)-terms have been neglected.
Rescaling the stiffnesses, i.e. specifying their dependence upon ε, as

kαi,j = K
α
e ; bαi,j = K

α
b ; b3

i,j = Kpε
2,
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Figure 2.22 Rectangle bias pantographic sheet specimen subject to an extension test. Comparison
between the deformed shapes of the homogenized 2D in-plane continuum (macro-model
derived from Hencky meso-model) and 3D Cauchy modelling (micro-model) using isotropic
hyperelastic material (top-left) [133]. Macroscopic continuum modelling is evaluated at material
lines corresponding to fibres in the 3D model, and colours represent strain energy density for the
macroscopic continuum model. Results for the two kinds of modelling overlap. Remaining plots
show zoomed deformed configurations for Cauchy modelling. Colours represent strain energy
density.

K
α
e , Kα

b and Kp being independent of ε, and homogenizing, i.e. letting ε → 0, we are
finally left with the macro deformation energy

U (χ(·)) =
ˆ

�

∑
α

K
α
e

2
‖FDα − 1‖2dS

+
ˆ

�

∑
α

K
α
b

2

[
‖∇F|Dα ⊗ Dα‖2

‖FDα‖2
−
(

FDα · ∇F|Dα ⊗ Dα

‖FDα‖2

)2
]

dS

+
ˆ

�

Kp

2

∣∣∣∣arccos

(
FD1 · FD2

‖FD1‖ · ‖FD2‖
)
− π

2

∣∣∣∣ξ dS. (2.39)

We note that ‖FDα−1‖2 in the above formula is the stretch of material lines directed
in the reference configuration along the fibres family α, while

‖∇F|Dα ⊗ Dα‖/‖FDα‖ − FDα · ∇F|Dα ⊗ Dα/‖FDα‖2 (2.40)

depends upon the second gradient of the placement function and is the curvature of
such material lines. We further note that a different elastic constitutive law could have
been chosen in Eq. (2.30) for springs in the Hencky model. For example, instead of
considering (cosϑαi,j + 1), we could have considered (ϑαi,j − π)2. Clearly, by Taylor

expanding (cosϑαi,j in the neighbourhood of ϑαi,j = π up to o(ϑ3
i,j ), it is seen that up to

o(ϑ3
i,j ) the two choices are equivalent. In order to homogenize (ϑαi,j −π) it is possible to

exploit computations shown in Chapter 4, even if a different notation has been employed
(cf. ϑ(i,j ),α).
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2.2 Acoustic Metamaterials

2.2.1 Introduction

The definition of acoustic metamaterial was introduced for the first time by Walser
[128] and can be efficaciously stated as artificial materials synthesized with the aim
of manipulating and controlling wave propagation. Usually, according to the philoso-
phy underlying the metamaterials’ framework, non-standard behaviour at macro-scale
is obtained by conceiving a microstructure constituted by an elementary cell that is
periodically repeated.

The interest in acoustic metamaterials originates from results obtained studying the
propagation of electromagnetic waves in optical metamaterials. Indeed, non-standard
electromagnetic phenomena such as transformation optics, time reversal techniques,
negative refraction index, sub-wavelength imaging, with their remarkable applications
like cloaking, have acoustic and mechanical counterparts which could be of great
interest.

The need to overcome issues in acoustic metamaterials exploiting Bragg scattering
(i.e. diffraction) has driven the development of so-called locally resonant materials.
This section will be mainly devoted to the description of this kind of metamaterials.
The microstructure of locally resonant materials is usually conceived as a matrix of
local resonators embedded in a host medium (theoretical and experimental interesting
attempts can be found in [136–139, 139, 140]). By varying the parameters of the res-
onators and/or of the medium it is possible to tune the frequency band-gap(s) and/or
other relevant macroscopic properties in a very precise way.

This section is organized in the following way. In Sub-section 2.2.2 a brief historical
overview of developments in acoustic metamaterial research will be given. In Sub–
section 2.2.3, we will discuss by means of simple arguments the modelling of single
metamaterials cells, which is usually a key aspect in the understanding of the global
material behaviour.

2.2.2 A Short Historical Overview

The field of acoustic metamaterials has been strongly inspired by phenomena observed
in the propagation of electromagnetic waves.

The origin of the optical metamaterials field is usually traced back to the seminal
paper (1967) by Victor Veselago, a Russian physicist who theoretically conjectured the
existence of a material characterized by both negative magnetic permeability and elec-
tric permittivity. In particular, he proved that such an electromagnetic medium is char-
acterized by a negative index of refraction [141]. This feature has several consequences,
such as the possibility to build a flat convergent lens and to observe inverse Cerenkov
radiation and inverse Doppler effect [142, 143]. However, the first steps toward the
actual realization of Veselago’s vision had to wait until the 1990s, thanks to the work of
John Pendry (one of the pioneers of the metamaterials field) [144, 145] and only since
2000 have actual prototypes have been produced (see for instance [146, 147]).
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Research aimed at replicating the fundamental principle of optical metamaterials
for acoustic phenomena began in 2000 with the seminal paper by Liu et al. [148].
This work was probably the first attempt to exploit the analogies between acoustic
and electromagnetic wave propagation phenomena. In particular, they provided the first
experimental and numerical analyses of elastic wave propagation in a three-dimensional
resonant structure made of an array of thin coated spheres. One of the first attempts at
studying an acoustic medium analogous to Veselago’s double negative optical material
was reported in [149, 150], where a material with negative bulk modulus and negative
density was studied. More recently, another example of such a material was proposed
in [151] by Fang et al., who studied experimentally the behaviour of a chain of split
ring resonators filled with water, characterized by an effective negative stiffness, in an
ultrasonic regime. On the theoretical side, Milton and collaborators did some remarkable
work aimed at the modelling of acoustic metamaterials [152–154].

2.2.3 Locally Resonant Microstructures

Phenomena which occur in wave propagation through acoustic metamaterials strongly
depend on the characteristic dimension of the internal microstructure and on the wave-
length. The ratio between these two characteristic lengths makes it possible to divide
acoustic metamaterials into two classes. If the characteristic length of the internal sys-
tem is of the same order of magnitude as the wavelength, the material will behave
like a so-called diffraction metamaterial (phononic crystals are an example of acoustic
metamaterial intended to show its effects for wavelengths comparable with the charac-
teristic length). On the other hand, if the microstructure characteristic length is much
smaller than the relevant wavelengths (i.e. those for which interesting phenomena are
to be exhibited), we refer to metamaterials based on locally resonant microstructures.
A typical example is the microstructure realized by Liu et al. [148], which consists of
an array of lead spheres coated with soft rubber and embedded in an epoxy matrix.
From the technological point of view, this class of metamaterials can be exploited
for several applications. Indeed, the particular arrangement of the microstructure can
give rise to interesting features, like negative shear modulus, negative bulk modulus,
negative effective mass, etc. In this section we will focus on this last class and we
will sketch the main features of the mathematical modelling of their microstructure.
The standard approach to describe the macroscopic behaviour of a metamaterial is
to understand the basic working principle of a unit cell of the microstructure, and
then to pass to a macroscopic description by means of a homogenization procedure.
In the following subsections, we will describe how the features of locally resonant
metamaterials are related to the microstructure. Then we will analyse some relevant
homogenization procedures.

Negative Effective Mass
The first peculiar effect of locally resonant metamaterial that we want to investigate (we
will partially follow the seminal book [155]) is the so-called effective negative mass
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Figure 2.23 An elementary cell which exhibits negative effective mass in a particular frequency
range.

(see for instance [149, 156]). The basic working principle of such structures can be
exemplified by considering the microstructure in Fig. 2.23.

It is a mass–spring system, consisting of a small mass M1 (spherical and modelled
as a material particle), encapsulated into a hollow sphere of mass M2 and connected
to it by means of two springs with elastic constant K . The equations of motion of this
system are:

M1ẍ = 2K(X − x),

M2Ẍ = 2K(x −X),
(2.41)

where we indicate with x and X the horizontal displacement of barycentres of masses
M1 and M2, respectively. Since the resulting net force vanishes, the total linear
momentum

P = M1ẋ +M2Ẋ (2.42)

is a constant of the motion. We consider harmonic solutions of Eq. (2.41), i.e.:

x(t) = x̄eiωt ,

X(t) = X̄eiωt .
(2.43)

By substituting them in the equations of motion (2.41) we obtain

M1ω
2x̄ = 2K(x̄ − X̄), (2.44)

from which we get

x̄

X̄
= ω2

1

ω2
1 − ω2

, (2.45)

where

ω1 =
√

2
K

M1
(2.46)
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is called resonance frequency. The ratio of the total momentum P and the velocity Ẋ is
called effective mass Meff of the system. In this case it reads:

Meff = M1
x̄

X̄
+M2 . (2.47)

By considering Eqs. (2.45) and (2.46), the previous expression becomes:

Meff = M1
ω2

1

ω2
1 − ω2

+M2 . (2.48)

Looking at this expression we can note that the effective mass Meff can be negative. In
particular, it happens when

ω1 < ω < ω1

√
M1 +M2

M2
, (2.49)

or equivalently when

K >
1

2
μω2,

K

M1
<

ω2

2
, (2.50)

where μ indicates the reduced mass of the system:

μ = M1M2

M1 +M2
. (2.51)

By means of equations (2.50) it is possible to tune the system parameters to obtain an
effective negative mass behaviour.

Now, let us consider a one-dimensional infinite array made by the periodic repetition
of the cell in Fig. 2.23. The cells are connected by means of springs with stiffness k, and
two hollow spheres are separated by a distance d, which is the length of undeformed
springs (see Fig. 2.24).

If we indicate with ri and Meff,i the position and the effective mass of the ith cell,
respectively, the system is governed by the following tri-diagonal autonomous linear
system:

Meff,i r̈ = k(ri−1 − 2ri + ri+1). (2.52)

We want to compute the effective mass for this discrete system under the hypothesis
Meff,i = Meff, ∀i. From now on, we indicate the initial position of the ith cell with

Figure 2.24 A periodic one-dimensional array of cells which exhibit negative effective mass.
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xi . By embedding the array in a continuous line S, we are able to define the following
Lagrangian field

u : S × [0, T ] −→ R, (2.53)

with the (Piola’s) ansatz u(xi , t) = ri(t). It is possible to decompose the field u in Fourier
series:

u(x, t) = 1√
2π

ˆ +∞

−∞
eiqxũ(q, t) dq, (2.54)

where we have indicated with q the wave number of the corresponding Fourier mode
and with ũ(q, t) the Fourier transform of the function u(x, t). According to the Piola’s
ansatz, we have that

r̈(x, t) = 1√
2π

ˆ +∞

−∞
eiqxü(q, t) dq, (2.55)

and by plugging it into Eq. (2.52) we obtain:

Meff

ˆ +∞

−∞
eiqxü(q, t) dq =

ˆ +∞

−∞
keiqx(2 cos(qd)− 2)u(q, t) dq, (2.56)

and since the effective mass is uniform:

Meffü(q, t) = 2k(cos(qd)− 1)u(q, t). (2.57)

Let us consider again a harmonic solution of (2.57), i.e.

u(q, t) = A(q)eiωt . (2.58)

By substituting it into Eq. (2.57) we obtain the dispersion relation of this discrete
system:

Meffω
2 = 2k(1− cos(qd)) = 4k sin2

(
qd

2

)
. (2.59)

If the frequency ω lies in the range of values that yields a negative effective mass, then

q in the expression above has to be imaginary, so that sin
(

qd
2

)
is an imaginary number.

An imaginary wave number implies that the superposition of harmonic waves gives rise
to an evanescent wave, which means that the wave cannot propagate. This feature can be
exploited for engineering applications. Indeed, by tuning the characteristic parameters
of a single cell we can fix an interval of frequencies which yields negative effective mass.
Equation (2.59) is telling us that this interval of frequencies corresponds to a band gap in
the dispersion relation, meaning that waves with these frequencies cannot propagate in
the medium. This result, which has been observed also experimentally (see for instance
[157]), has led to several technological applications, like acoustic insulators [158].

Negative Bulk Modulus
Another peculiar feature of locally resonant acoustic metamaterials is the so-called
negative effective bulk modulus. To show the basic working principle leading to negative
effective bulk modulus, let us consider the microstructural unit cell depicted in Fig. 2.25.
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Figure 2.25 System which exhibits negative effective bulk modulus in a particular frequency
range.

This system is made of a series of three massless springs, where the two extremal
springs have stiffness k, while the central one has stiffness K . A key datum is that
these springs are constrained to have only horizontal displacements. Two rigid bars are
connected to the ends of the central spring by means of frictionless hinges. The two bars
are in turn connected together at their top end by means of a mass M . We have denoted
by x̄ and x the horizontal displacement of the central and left springs, respectively.
Two external forces F (t) are horizontally applied to the two ends of the system, as
shown in Fig. 2.25. The geometric constraint which obliges the springs to move only
horizontally induces two vertical reaction forces to the hinges, which make the mass
M move vertically. We will denote this vertical displacement as y, and the associated
equation of motion is:

Mÿ = f (t), (2.60)

where we have expressed the vertical net force on M as f (t). At both ends of the springs,
we have:

F (t) = k(x(t)− x̄(t)). (2.61)

If we now consider only small displacements x̄, the angle between the springs and the
bars, say α, can be approximated as a constant and we have that

y(t) = x̄ tanα, (2.62)

which implies:

f (t) = 2(F (t)− 2Kx̄(t)) tanα. (2.63)

By replacing this expression in (2.60) we obtain the following expression:

Mÿ = 2(kx − y(t)(k + 2K)) tan2 α. (2.64)

Let us consider a harmonic force of the form

F (t) = F0e
iωt , (2.65)
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which will induce harmonic solutions

x(t) = x0e
iωt ,

x̄(t) = x̄0e
iωt ,

y(t) = y0(t)eiωt .

(2.66)

We now define the effective bulk modulus Keff of this system as

Keff = F0

2x0
, (2.67)

which, by replacing Eqs. (2.65) and (2.66) in Eq. (2.64), reads as:

Keff = k

2

[
Mω2 − 4K tan2 α

Mω2 − 2(K + k) tan2 α

]
. (2.68)

From this expression we can deduce that the effective bulk modulus of this system can
assume negative values when the frequency ω lies in the range:√

4K

M
tanα < ω <

√
2

2K + k

M
tanα. (2.69)

The physical interpretation of this phenomenon is that the oscillating external forces
induce the oscillatory vertical motion of the mass M which is in turn transmitted to the
horizontal springs by means of the rigid bars. In this way a vertical motion is converted
into a horizontal one. This resonant behaviour causes a global horizontal dilation which
gives rise to a negative effective bulk modulus, even for compressive forces.

Doubly Negative Materials
Following the analogy with the electromagnetic case, we shall now consider the pos-
sibility of obtaining double negative mechanical metamaterials, i.e. materials which
exhibit both negative effective stiffness and effective mass. The seminal work [143]
by Veselago was the first to raise the problem of studying effects of materials with both
negative magnetic permeability and electric permittivity on electromagnetic wave prop-
agation. The main point of interest is that double negative materials exhibit a negative
refraction index. The study of this phenomenon has prompted major efforts in a new
research direction called lensing [159], which has led to significant improvements in the
factory production of flat lenses.

The acoustic counterpart of this phenomenon is clearly interesting for many tech-
nological applications and the challenge consists in designing a microstructure able to
give at macro-scale both negative effective mass and stiffness [27, 160–162]. This kind
of microstructure would then be characterized by an exotic wave propagation behaviour
due to the negative refraction index.

Of course, in a first attempt one might contemplate assembling the two microstruc-
tures which we have discussed in the previous two sections, arranged as in Fig. 2.26.
However, this microstructure shows a very narrow range of frequencies for which both
effective mass and stiffness are negative, and this fact seriously limits the suitability of
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Figure 2.26 A possible system giving double negative properties.

Figure 2.27 Model of basic unit cell for chiral elastic metamaterial.

such a system to resolve practical problems. Liu et al. [27] have recently designed a new
microstructure called chiral elastic metamaterial (see Fig. 2.27).

Referring to Fig. 2.27 for the notation, we have that the force exerted by the spring
with stiffness k2 on the disk, say f2, is:

f2 = k2(r�− x cosα). (2.70)

The disk is treated as a rigid body, whose equation of motion is

I�̈ = −2f2r , (2.71)

while external forces F obey:

F = k1x − f2 cosα. (2.72)

Following the methods discussed in the previous sections, the expression for the effec-
tive bulk modulus of the system reads

Keff = k1

2
+ k2

2
cos2 α

(
1− ω2

0

ω2
0 − ω2

)
, (2.73)
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Figure 2.28 A possible unit cell physical realization for chiral elastic metamaterials.

where ω0 =
√

2 k2r
I

is the resonance frequency. Again, this system admits a range of
frequencies ω leading to negative bulk modulus, i.e.:

ω0

√
k1k1 + k2 cos2 α < ω < ω0 . (2.74)

Showing that this system also admits negative effective mass can be easily done by
following the same computations as used in Sub-section 2.2.3, while also considering
horizontal translation for point B. Therefore, in the proper range of frequencies, namely
the one in which both effective bulk modulus and effective mass are negative, this
metamaterial is characterized by a negative refractive index. Among the many possible
practical realizations of this system are soft-coated heavy cylinder cores embedded
in a matrix (see Fig. 2.28), but several other interesting proposals, see for instance
[163, 164], have been reported in the literature.
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3 Pantographic Metamaterial:
A (Not So) Particular Case
F. dell’Isola, M. Spagnuolo, E. Barchiesi, I. Giorgio, P. Seppecher

3.1 Introduction

This chapter is devoted to discussion of a particular class of metamaterial, termed as pan-
tographic metamaterial. The research work on this type of metamaterial began in 2003.
However, recently, owing to the very rapid development of 3D printing technologies,
this work has been enriched through experimental evidence. The current chapter focuses
upon the theoretical developments alone, since the fast emerging experimental aspects,
which include design, characterization and evaluation of pantographic metamaterials,
deserve their own dedicated discussion in a separate chapter.

Materials on Demand
In the last few years, the field of so-called metamaterials has been vigorously explored
and exploited in many different ways. In the first (mechanical metamaterials) and second
(acoustic metamaterials) chapters of this book, we have largely written about existing
metamaterials. In the literature, metamaterials are generally treated as material systems
endowed with particular microstructures, and, typically, the global properties of these
material systems are analysed using methods devised within the framework of classical
or generalized mechanical theories. In contrast, it is more interesting to regard metama-
terials as material systems ‘on demand’, which are expected to fulfil certain functional
requirements. In this sense, we must first conceive the theoretical governing equations
that describe the requirements and, subsequently, search for a material system whose
physics (or mechanical properties if the interest so demands) is specified, in some way,
perhaps not exactly, by the conceived equations. Clearly, this point of view opens the
horizon to innumerable possibilities of applications. Moreover, current capabilities to
produce in a relatively simple way the designed microstructures make it possible to
establish experimental foundations for certain mathematical theories which have been
an object of varying controversy up to recent times. Thus, the general problem to be
solved for designing a new metamaterial is the following: given a desired behaviour,
to first find the evolution equations that mathematically describe such a behaviour, and
then to specify the material (micro)structure governed by the chosen equations.

With the advancements in manufacturing techniques (e.g., 3D-printing technology
and, more generally, of rapid prototyping techniques), the small scale production of
materials with complex geometries has become more affordable than ever [1–4, 69–72].
The exploitation of these new technologies in recent years has driven development
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of material systems with many different sub-structures. Consequently, there has been
an acceleration in the determination and study of new microstructures that, at a well-
specified macroscopic scale, exhibit behaviours that are best described by non-standard
mathematical models like generalized continuum theories. For instance, the motivations
that led to the consideration of pantographic microstructures, i.e. to be well-described
at a certain macroscopic spatial scale by second gradient continuum theories, have been
extensively discussed in the literature [5–7, 64–68]. As a significant consequence, these
considerations have supported the development of a flourishing literature on the history
of such higher gradient and generalized continuum theories, some of which have shown
[8, 9] that many ‘generalized’ theories were formulated before or together with the
so-called ‘classical’ theories and then lost, suggesting [10, 11] that some generalized
theories were already known at least two centuries ago.

Pantographic Metamaterial
The mathematically driven design of pantographic metamaterial has clearly established
that the pioneering efforts to give practical foundations to generalized continuum theo-
ries have shown the way to manufacture constructs (microstructures and mechanisms)
using existing materials and emerging technology of additive manufacturing that have
non-trivial, appealing and tailorable mechanical properties. A pantographic metamate-
rial (or fabric) conceived through this approach consists of a planar grid obtained by
the superposition of two families of fibres (see Fig. 3.1) that are connected by means
of small cylinders, called pivots. In the design of these pantographic structures, the aim
was to find a material system exhibiting mechanical properties described by a second
gradient theory. This theory, which has been studied by Germain [12], Toupin [13],

Figure 3.1 Example of polyamide 3D printed pantographic structures: (a) a ‘standard’
pantographic fabric; (b) a pantographic structure with perfectly compliant pivots; (c) a ‘doubly’
pantographic plate; (d) a ‘millimetric’ pantographic structure.
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Mindlin [14] and Hellinger [15, 16], is based upon the consideration that the strain
energy depends not only on the displacement gradient but also on its second gradient.
In what follows, we will first introduce the result of the theory-driven design since
this is the main concern of this chapter. We note, therefore, that we will refrain here
from further exposition of the deductionist-falsificationist approach presented in the
chapter dealing with model theory, which is the approach followed by the contributors
to this subject and, as discussed in that chapter, is the preferred and the more powerful
approach.

At the first stage of the research effort, the problem was approached from a theoretical
point of view. The mathematical models, which were initially introduced, belong to
the class of generalized continua, as we have mentioned before. The introduced inde-
pendent kinematic fields include not only the displacement field but also, eventually,
microstretch and microrotation fields. In the second stage it was necessary to develop
numerical integration schemes and the corresponding codes for solving, in physically
relevant cases, the equations chosen to describe the desired behaviour. Finally, it was
necessary to physically realize the microstructures. We can set out a scheme for the
whole research process in the following way (for a pictorial representation see Fig. 3.2):

i. design: modelling novel and exotic architectured metamaterials based on a
mathematical understanding of the related mechanical problems and on suitably
designed numerical simulations;

ii. production: building the designed prototypes by using 3D printing technology;
iii. testing: testing prototypes with experimental apparatuses;
iv. model calibration: producing a careful model fitting of the experimental data by

systematic use of numerical simulations;
v. validation: elaborating the obtained data with image correlation techniques for

comparing the proposed models with experimental evidence.

The Pantographic Paradigm: An Example of Theory Driven Design
Note a further peculiarity: the case of pantographic metamaterials constitutes a scien-
tific paradigm, which can be translated to very different fields. Every scientific theory
can be developed from two different starting points: conjecture, if there are not initial
experimental observations, or hypothesis, if everything begins by an effort to interpret
some experimental phenomena. The subsequent development of a scientific theory is
then always based on validation of the proposed model by experiments. In this sense, the
same word theory derives its meaning from the Greek θεωρός (observer, more precisely
a θεωρός was an envoy sent to consult the oracle: similarly, the word theory catches
the sense of looking to obtain some information), which is a word composed by θέα
(view, sight) and the verb ὁράω (to see): we have to look at experimental observations
to validate a scientific theory. From this point of view, it is interesting to consider the
definition of theory as given by Russo in his book [8], because it is possible there to find
the same logic employed in the development of the theory of pantographic structures.
The rationale is a very old one: it is the basis of science. In his book, Russo states that
(literal citation):
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Figure 3.2 Stages of the research process.
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A theory has to be such that:

1. Its statements are not about concrete objects, but about specific theoretical entities. [. . .]
2. The theory has a rigorously deductive structure; it consists of a few fundamental

statements (called axioms, postulates, or principles) about its own theoretical entities, and
it gives a unified and universally accepted means for deducing from them an infinite
number of consequences. [. . .]

3. Applications to the real world are based on correspondence rules between the entities of
the theory and concrete objects. [. . .]

Any theory with these three characteristics will be called a scientific theory. The same term will
be used for some other theories, which we may call ‘of a higher order’. They differ from the
theories we have been considering so far in that they possess no correspondence rules for
application to the real world – they are applicable only to other scientific theories.

For a long time, second gradient materials have been treated as the objects of a theory
whose set of described phenomena was empty, as experimental evidence able to demon-
strate the necessity of reverting to a theory different from classical Cauchy elasticity
was missing. Pantographic fabrics provide not only an example of real materials whose
description needs the introduction of a second gradient theory, but also an easy-to-
handle example of a powerful methodological approach, which can be used to analyse
more complex and exotic structures.

3.2 Modeling Pantographic Structures: A Rèsumè of Results Obtained

Pantographic structures have been studied from different points of view during the last
decade. Here we give an overview of the models developed to describe the different
aspects of this particular metamaterial. Specifically, the fundamental nucleus of the
chapter is a presentation of the three main 2D models: the basic Hencky-type discrete
model; an intermediate ‘meso-model’ in which the pantographic structure is considered
as composed of Euler–Bernoulli beams; and a continuum second gradient model, which
is derived by a heuristic homogenization of the discrete one. This last model represents
one of the main reasons for the development of research on pantographic structures.
In fact, the theoretical interest in pantographic structures is due to the fact that, for
a correct description of their peculiar phenomenology, it is necessary to use higher
gradient continuum theories [17, 18] with the relative problem of homogenization [19]
and of different possibilities of numerical integration [20, 21]. The presentation of the
three 2D models is preceded by an overview of some existing works which inspired
the further formulation. Finally, we give some details on two elastic surface models
representing a generalization of the 2D model, formulated in order to take into account
the possibility that the structures undergo some out-of-plane deformations (e.g. buckling
or wrinkling modes).

3.2.1 Pantographic (Micro-)Structures: The Original Path

The very first theory of a pantographic structure as a micro-model associated with a
macroscopic second gradient continuum model can be found in [6]. The fundamental
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idea was the following: to find the micro-model leading to, in the sense of some homog-
enization procedure, the simplest second gradient continuum model. The described
development can be classified as a multiscale procedure. The history of mechanics offers
many examples of multiscale procedures, developed principally to set the relations
between macro-models and micro-models. Among the first examples, as reported by
Benvenuto in his book about the history of structural mechanics [22], are those due to
Maxwell and Saint-Venant [23].

In the field of multiscale procedures, a very efficient approach consists in asymp-
totic identification. Once the micro and macro models have been postulated a priori, a
kinematic correspondence is found between them and, subsequently, the equality of
the power expended in the corresponding (micro- and macro-) motions is enforced.
Through this approach it is possible to evaluate the parameters of constitutive equations
of the macro-model in terms of the parameters of the basic cells which form the micro-
model. Before proceeding with the description of the model employed in [6], the reader
should note a peculiar fundamental aspect of this approach. In this approach, we first
postulate the macro-model as a second gradient continuum, and only after that do we
look for a possible micro-model which produces the macro-model via homogenization.
This theory-driven approach (see again the chapter on model theory) is, in our opinion,
very powerful: we don’t look at random microstructures hoping to find one which is
suitable for our purposes, but rather, having in mind the theory, we want to build the
microstructure needed to conform to the theoretical predictions.

At the time that pantographic structures were proposed as metamaterials, second
gradient models were already present in the literature. As we have already remarked
in the chapter about mechanical metamaterials, we can refer to the elastica studied by
Euler, Bernoulli and Navier as the very first example of a second gradient model: so, it is
necessary to go (at least) back to the beginning of the eighteenth century to find the roots
of second gradient theories. The model proposed by Euler is a 1D model. It was after
almost a century that the first (incomplete) second gradient 2D and 3D model attributed
to the Cosserat brothers [24] was proposed, although it is notable that the origins of
3D higher gradient – and even peridynamic – models can be traced back at least to
Piola [10]. We call a material an incomplete second gradient material if its deformation
energy depends only on ∇u and ∇ω(u), where ω(u) is the skew-symmetric part of the
gradient ∇u of the displacement, ω(u) = ∇u−ε(u) with ε(u) the symmetric part of ∇u.
It is possible to find complete 2D and 3D second gradient models in the description of
capillarity or also in the theory of damage and plasticity (because of the well-posedness
of mathematical problems related to second gradient models).

The simplest second gradient continuum model is the 1D planar beam studied by
Casal in [26, 27] and quoted by Germain in [12]. We can write its (quadratic) deforma-
tion energy as

E(u, v) = α

2

ˆ L

0

((
u′′
)2 − 2βu′′v′′ + (

v′′
)2
)

dx, (3.1)

where u and v are, respectively, the axial and transverse components of the displace-
ment and α and β some parameters with α > 0 and |β| < 1. The usual energetic
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term due to elongation, proportional to the square of the first derivative of the axial
displacement (u′)2, is not present in this formulation. From a phenomenological point
of view this means that we have a material with a very particular behaviour, that is, it can
be stretched without expending any energy. This is one of the most remarkable ways to
characterize the pantographic microstructure. Indeed, during the research involved in the
development of pantographic fabrics, the objective was to find a microstructure which
could be stretched at zero energy (a so-called floppy mode).

As a generalization of the simple example proposed by Casal, we can consider a
material with the following elastic energy:

E(u) =
ˆ

�

A∇∇u · ∇∇u, (3.2)

which is a pure second gradient energy, i.e. it does not at all involve the first gradient
of the displacement field. This material is in general subject to a volumic force f and
to a generalized boundary force (traction, double forces. . . ) F . We note that, indeed,
when considering a similar material, the mechanical interactions with the external world
which are involved are not only traction forces but also generalized ones (such as, for
example, double forces). If we set σ = 2A∇∇u for simplicity (σ is a third order tensor)
then we can write the variational formulation as

∀v,
ˆ

�

σ · ∇∇v −
ˆ

�

f · v −
ˆ
∂�

F · v = 0. (3.3)

Through successive integrations by parts we get the boundary conditions in second
gradient theories:

div (div(σ))− f = 0 on � (3.4)

−divs(σ · n)//− div(σ) · n = F on ∂� (3.5)

(σ · n) · n = 0 on ∂�. (3.6)

These boundary conditions are not interpretable on the basis of the standard Cauchy
continuum mechanics, and clearly new mechanical interactions arise in higher order
theories (we refer to [18] and to Chapter 1 for more details).

The pantographic structure, see a basic module in Fig. 3.3 and a 1D planar array in
Fig. 3.4, was first introduced in the field of homogenized generalized media in [6, 28].

To obtain the corresponding homogenised macro-model it is necessary to consider a
structure composed of n pantographic modules and to study its behaviour when n tends
to infinity.

Figure 3.3 Basic module of a pantographic structure and its stretched configuration.
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Figure 3.4 Pantographic microstructure of a 1D planar beam.

Some formal asymptotic expansion procedures, already used in [6, 28], are systemat-
ically considered in [29] for determining the effective properties of periodic structures
consisting of welded linear elastic bars. Remarkably, for the case when the bending and
torsion stiffnesses of isotropic homogeneous elastic bars are lower than the extension
stiffness, interesting macro-models are obtained. In finding macro-models for micro-
architectured metamaterials there is usually a complex estimate that needs to be made,
namely, is the energy associated with second gradient displacements negligible with
respect to first gradient energy? For a long time it was believed that second gradient
energies were always negligible [11]. This belief was proven to be ungrounded at
the dawn of modern continuum mechanics by Gabrio Piola [10, 30]. However the
results of Piola have been ignored for a long time in the orthodox Cauchy–Truesdell
school.

In order to show that synthesizing second gradient metamaterials with non-negligible
second gradient energy is not only possible, but can be addressed mathematically, it has
been proven that [6, 31]:

i. pantographic microstructures allow for the synthesis of Casal-type beams (see
deformation energy in Eq. (3.1));

ii. using two families of pantographic substructures it is possible to synthesize sec-
ond gradient plates: i.e. plates whose deformation energy depends on second
gradients of in-plane displacements;1

iii. in the presence of perfect pivots2 the macro deformation energy of short beam
pantographic structures does not include any first gradient terms at all, and in
pantographic fabrics one can observe so-called floppy-modes: i.e. homogeneous
local deformations corresponding to vanishing deformation energy (see also the
remark below);

iv. the mathematical treatment of second gradient linearized elastic continua (synthe-
sized as described in this chapter) requires the introduction of anisotropic Sobolev
spaces [32, 33].

remark In so-called long-fibre pantographic metamaterials (see Fig. 3.5) there is only
a 1-parameter family of floppy modes while in short-fibre pantographic metamaterials
(see Fig. 3.6) there are∞3 floppy modes.

1 In classical plate theory the second gradients of transverse displacements only appear in the deformation
energy.

2 The reader will see in Chapter 6 that 3D printing allows for the construction of microstructures with
so-called perfect pivots, i.e. hinges or pivots which can be twisted without expending any energy.
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Figure 3.5 Reference configuration (a) and deformed configuration (b) of a pantographic beam.
The deformed configuration (b) represents a so-called floppy mode.

Figure 3.6 Reference configuration (a) and deformed configurations (b) of a pantographic 2D
structure. The deformed configurations (b) represent some of the floppy modes.

We underline here, in particular reference to Chapter 4 on naive model theory, that we
did not find the pantographic microstructures via a data-driven procedure, nor by trial
and error. Instead, being guided by classical mechanics, we built some mechanisms
whose degrees of freedom would produce ‘floppy modes’ at micro-level in the designed
and desired metamaterials. Adding some extra constraints (i.e. considering the boundary
conditions needed for second gradient continua, see [6, 31, 43], one ‘blocks’ macro
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Figure 3.7 Warren-type pantographic microstructure, producing as a homogenized model a third
gradient planar beam model.

floppy modes but leaves them active at the local (micro) level. We therefore achieve
theory-driven synthesis of second gradient materials.

As a second example of synthesis of higher gradient materials, in [6] it is shown
how, by considering a modified (Warren-type) pantographic structure as micro-model,
it is possible to obtain a third gradient planar beam model (Fig. 3.7) as a homogenized
macro-model. An interesting difference between the two models is that the pantographic
beam does not store any energy when undergoing uniform extension, while the Warren-
type pantographic beam undergoes a floppy-mode under uniform flexure.

3.2.2 Pipkin’s Higher Gradient Plate Modelling Systems with Inextensible Fibres

The model we have previously presented is a linear model (see the energy reported in
Eq. 3.1). We now describe the generalization to the non-linear case. The efforts in that
direction are based upon work by Pipkin and co-workers [34–41] on inextensible fibres.
Taking inspiration from this work, 2D continua composed by two orthogonal families
of inextensible fibres have been studied in [42], and this work was further extended and
applied to pantographic lattices in [5, 43]. The concept of a continuum model regarded
as composed of fibres needs further explanation. Let us consider a 2D continuum with a
rectangular domain � ⊂ R

2 as reference shape. The sides of the rectangle are in a ratio
of 1:3 (so chosen since some remarkable features arise if we consider structures whose
sides ratio is at least 1:3, as we will describe in the chapter dedicated to experimental
methods). To invesigate the planar motions of this continuum, we introduce a suitably
regular function χ : �→ R

2 (we call it ‘macro-placement’) which relates the reference

positions to the current ones (X1, X2)
χ�→ (x1, x2).

An orthogonal frame of reference (O, ξ1, ξ2), whose axes ξ1 and ξ2 are oriented along
the inextensible fibres in the reference configuration, is introduced. Accordingly, we
have the following non-dimensional coordinates:

ξ1 := 1

l
(X1 −X2)+ 1

2
, ξ2 := 1

l
(X1 +X2)+ 1

2
. (3.7)

A graphical explanation of the introduced quantities is given in Fig. 3.8. The Cartesian
frame (O, ξ1, ξ2) is chosen so that the members of its associated basis, namely the
ordered couple of vectors (D1, D2), are oriented, in the reference configuration, as the
two families of fibres. The inextensibility constraint can be introduced by considering
that a curve γ is inextensible for a placement χ if, for every part γ1 of γ, χ(γ1) has the
same length as γ1. The presence of this ‘inextensibility constraint’ allows us to discuss
inextensible fibres.
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Figure 3.8 The inextensible fibre configuration and relative Lagrangian coordinates.

By definition, d1 and d2 are considered to be the transformed vectors in the current
configuration, of the vectors D1 and D2, respectively, i.e. dα = FDα, α = 1, 2, where
F = ∇χ. From their definition, which requires that χ is at least locally continuously
differentiable, it follows that the vectors dα are tangent to the fibres in the current frame.
Moreover, the inextensibility constraint implies that ‖d1(ξ1, ξ2)‖ = ‖d2(ξ1, ξ2)‖ = 1
for all (ξ1, ξ2). It can be shown (see Rivlin [44] for a formal demonstration) that, if
we restrict our analysis to an open simply linearly connected set � of �, where χ

is twice continuously differentiable, the inextensibility of fibres allows the following
representation formula:

χ�(ξ1, ξ2) = χ�
1 (ξ1)+ χ�

2 (ξ2). (3.8)

Moreover, if we denote with μ�
1 (ξ1) and ν�

1 (ξ1) the projections of χ�
1 (ξ1) on D1 and

D2, respectively, and ν�
2 (ξ2) and μ�

2 (ξ2) the projections of χ�
2 (ξ1) on D1 and D2,

respectively, then

χ�
1 (ξ1) = μ�

1 (ξ1)D1 + ν�
1 (ξ1)D2 and χ�

2 (ξ2) = ν�
2 (ξ2)D1 + μ�

2 (ξ2)D2. (3.9)
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Figure 3.9 Domain pattern induced by the boundary conditions.

As we have already noted, the constraint of inextensibility can be expressed by imposing
that the norm of d1 and d2 is equal to one. Therefore, we can introduce two quantities
ϑ�

1 (ξ1) and ϑ�
2 (ξ2) such that

d�
1 = cosϑ1(ξ1)D1 + sinϑ1(ξ1)D2 and d�

2 = sinϑ2(ξ2)D1 + cosϑ2(ξ2)D2. (3.10)

We can now study the Pipkin continuum by considering some boundary conditions. In
a standard bias extension test3 we fix the left short side of the rectangle (denoted by
�1) and we impose a non-vanishing displacement u0 on the right short side (denoted
by �2). Because of fibre inextensibility, the boundary conditions on �1 and �2 can be
used to determine directly the placement field in the interior of � [42], i.e. on the regions
�00 and �33 of Fig. 3.9. The determination of the function χ in the other regions then
follows in a straightforward manner.

Due to the fibre inextensibility we can also establish a relation between the functions
μ�

i and ν�
i

‖F ·D1‖2 = 1 ⇒ (
μ�

1,1

)2 + (
ν�

1,1

)2 = 1 ⇒ ν�
1,1 = ±

√
1−

(
μ�

1,1

)2
, (3.11)

‖F ·D2‖2 = 1 ⇒ (
μ�

2,2

)2 + (
ν�

2,2

)2 = 1 ⇒ ν�
2,2 = ±

√
1−

(
μ�

2,2

)2
. (3.12)

Hence, the admissible placements in the Pipkin’s plate are only determined by the
globally continuous and piecewise, twice continuously differentiable, fields μ1(ξ1) and
μ2(ξ2). Equations (3.10)–(3.12) allow us to restrict our study to the ordinary differential
equations

dμα(ξα)

dξα
= cosϑα(ξ), α = 1, 2. (3.13)

In fibre-inextensible 2D Pipkin continua it is customary to introduce the shear defor-
mation γ as a strain measure, defined as the scalar product of the fibre directions in
the deformed configuration. Recalling the inextensibility assumption and Eq. (3.10), the
shear deformation γ reads as

γ(ξ1, ξ2) := d1 · d2 = cos
(π

2
− ϑ1(ξ1)− ϑ2(ξ2)

)
= sin (ϑ1(ξ1)+ ϑ2(ξ2)) . (3.14)

3 It should be clear now that the bias extension test plays a central role in the study of deformable fabrics.
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Further, the following kinematic constraint should be enforced:

−π

2
< ϑ1 + ϑ2 <

π

2
( �⇒ −1 < γ < 1) , (3.15)

if the case ϑ1 + ϑ2 = ±π
2 , which represents overlapping fibres, is to be avoided. Now

that the fields ϑ1(ξ1) and ϑ2(ξ2) uniquely describe admissible placements, the strain

energy density W
(
ϑ1,ϑ2, dϑ1

ξ1
, dϑ2
ξ2

)
may be introduced. We postulate that W has the

following form:

W

(
ϑ1,ϑ2,

dϑ1

ξ1
,

dϑ2

ξ2

)
= αg(f (γ))+ βg(‖∇f (γ)‖), (3.16)

with g(x) = 1
2x2. Different functions f have been studied [5, 43], among which:

S f (γ) = γ,
Q f (γ) = arcsin γ,
T f (γ) = tan(arcsin γ).

The two cases (α = 1,β = 0) and (α = 0,β = 1) are referred to as pure first
gradient energy (1g) and pure second gradient energy (2g), respectively. Numerical
results [45–49] show that the equilibrium configurations obtained by considering second
gradient energies are substantially different if compared to the ones obtained with the
first gradient approach (see Fig. 3.10). An experimental validation is needed to decide
which model produces the best representation of reality. We will discuss this issue in
detail in Chapter 6 concerning experimental methods.

3.2.3 Three Scales, Three Models: Micro, Meso and Macro Models for Non-linear
2D Pantographic Sheets

Using the theoretical framework we have discussed as our basis, we can now consider
the non-linear 2D second gradient continuum model of a pantographic lattice with
extensible fibres. Clearly we can approach the problem from different points of view.
We note that we have introduced the necessary concepts needed to develop a micro
model and its homogenized second gradient macro model. We are also able to find a
homogenization procedure to connect the two different scales. Finally, a third approach
has been proposed to model a particular class of pantographic structures (when the fibres
of the same family are not too close to one another).

It is therefore important at this juncture to review how the modelling process relates
to reality. Via a process of design and subsequent manufacturing (we will address this
in the chapter about experimental methods), it is possible to obtain real samples which
are ultimately 3D objects composed of fibres with a non-zero cross-sectional area and
which are disposed in two parallel planes. Remember that in the models we refer to all
the fibres of one plane as a ‘family’ of fibres. The fibres of any plane are all parallel one
to the other and the two planes are separated by cylinders (or the pivots) which connect
the fibres of one family to those of the second family. Reality plays a fundamental role
in the definition of the representative elementary volume (REV). As can be observed
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Figure 3.10 Deformed equilibrium configurations and resultant (normal) forces on the short side
for a BIAS extension test for the first gradient 1gT (a) and second gradient 2gT (b) models.

in Fig. 3.11, at different scales we need different models for properly describing the
phenomena. So, for example, we can use a homogenized continuum model if we regard
the structure as a plate (Fig. 3.11a), but we will have to introduce a beam model to
describe it if the chosen REV is the one depicted in Fig. 3.11b, or we will clearly need
to use the standard Cauchy continuum model in the description of a small part of a fibre
(Fig. 3.11c), and it is likely that we shall have to use some atomistic method if our REV
contains only a few atoms.
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Figure 3.11 Different REVs for different scales imply different models: (a) Second gradient
continuum model; (b) Beam theory; (c) Standard Cauchy continuum mechanics; (d) Quantum
mechanics.

Figure 3.12 Three pantographic structures which differ in the density of fibres.

Clearly, the real sample is not a 2D continuum, but it will be modelled in the following
discussion as if it were. Obviously, when the fibres are too far apart (see Fig. 3.12.a) we
shall find that the continuum model is no longer applicable and for this specific case a
‘meso’ model which describes the structure as being composed of continuous fibres (so
it is not continuous in the sense of a 2D plate, but only in the description of the fibres)
has been developed.

Current research is directed toward investigation of the validity limits of the second
gradient continuum model. First results show that it is in good agreement with exper-
imental measurements also for structures not at all dense (in the sense of distribution
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Figure 3.13 Representation of the discrete Hencky-type model of a pantographic sheet (in the
detail the three rotational springs are shown).

of fibres) such as the one in Fig. 3.12.a. We will describe in the following, after the
presentation of the three models, some very preliminary results of this research.

3.2.4 Discrete Hencky-type Model

In conformance with multiscale procedures, a discrete approach can be considered for
modelling pantographic structures [28, 50, 51]. In the models previously presented
we had an inextensibility constraint on the fibres composing the structure. Here, to
obtain a better agreement with experimental evidence [5, 28] extension of fibres is
accounted for by modelling the fibres as being composed by material particles connected
by extensional springs. Moreover, for describing the bending of fibers at the micro level,
we introduce rotational springs at each node of the lattice.

Let us consider a Lagrangian Cartesian orthonormal coordinate system with its asso-
ciated basis of unit vectors (D1, D2) representing the fibre directions in the reference
configuration. In this configuration the lattice points have the following positions:

Pi,j = (iε, jε), i = 0, 1, . . . , N and j = 0, 1, . . . , M , (3.17)

where ε is the distance between two adjacent lattice points, and N and M are the num-
bers of points along the fibre directions (see Fig. 3.13). In the current configuration, we
denote the positions of the lattice points (whose position in the reference configuration is
labeled Pi,j ) with pi,j . The lattice points at the nodes Pi,j are connected by extensional
springs along two directions (Fig. 3.13). These extensional springs, characterized by
the rigidities k1

i,j and k2
i,j for the two directions, provide energetic terms depending on

the distances between adjacent contiguous points in the current configuration, i.e. the
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distance ‖pi,j+1 − pi,j‖ for the fibres which are oriented along D1 in the reference
configuration, and on the distance ‖pi+1,j −pi,j‖ for the fibres oriented D2 in the refer-
ence configuration. Further energetic terms are provided by rotational springs which are
positioned at each node. For a good representation of bending and shear of the structure,
we have to consider three rotational springs, characterized by the rigidities b1

i,j and b2
i,j

(bending of fibres) and b3
i,j (torsion of pivots), at each node. Their deformation energies

depend, respectively, on the angles:

1. ϑ1
i,j between the vectors pi−1,j − pi,j and pi+1,j − pi,j ,

2. ϑ2
i,j between the vectors pi,j−1 − pi,j and pi,j+1 − pi,j ,

3. ϑ3
i,j between the vectors pi,j+1 − pi,j and pi+1,j − pi,j .

We then postulate the following strain energy for the microscopic Lagrangian discrete
system:

U ({pi,j }) =
∑
j

∑
i

k1
i,j

2
(‖pi+1,j − pi,j‖ − ε)2 +

∑
j

∑
i

b1
i,j (cosϑ1

i,j + 1)

+
∑
j

∑
i

k2
i,j

2
(‖pi,j+1 − pi,j‖ − ε)2 +

∑
j

∑
i

b2
i,j (cosϑ2

i,j + 1) (3.18)

+
∑
j

∑
i

b3
i,j

2

∣∣∣ϑ3
i,j −

π

2

∣∣∣ξ ,

where ξ is a parameter that is equal to 2 for a generic linear case. In [50, 51], the above
described discrete model made of extensional and rotational (i.e. torsional) springs is
solved at each iteration by energy minimisation.

As a numerical application of the model described, see Figs. 3.14 and 3.15. In
Fig. 3.14 the deformed shape of a pantographic structure is shown resulting from a
BIAS extension test simulation using the discrete energy in Eq. (3.18). In the same
manner, in Fig. 3.15 we show the deformed shape of a pantographic structure resulting
from a shear test simulation.

3.2.5 Euler–Bernoulli Non-linear Beam Theory Meso-model

As noted, a homogenized model cannot be properly (exactly) used to describe all the
details of structures such as the one in Fig. 3.16 (even if we have already suggested that
the error in some sense is rather small). To reveal certain additional details for this kind
of structure one can consider so-called ‘meso-models’, which are intermediate between
the discrete and the homogenized. This model, along with an example of its numerical
application, was first presented in [52]. In this case, the fibres of the pantographic
structure are modelled as non-linear Euler–Bernoulli beams.

This model, which we discuss briefly here, makes it possible to describe structures
composed of two families of fibres (which are not very close to each other, see
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Figure 3.14 BIAS extension test numerical simulation of a pantographic structure described
by the discrete Hencky-type model: reference configuration (in grey) and current shape.

Figure 3.15 Shear-extension test numerical simulation of a pantographic structure described by
the discrete Hencky-type model: reference configuration (in grey)and current shape.

Fig. 3.16) interconnected by some cylinders (the real pivots) whose torsion and flexion
are a priori non-negligible. Pivots are modelled by adding in every interconnection a
torsional spring (accounting for the shear of the pantographic structure at a macro level)
and, possibly, an extensional spring (allowing for the sliding of a fibre with respect to
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Figure 3.16 Specimen in the reference configuration.

Figure 3.17 Reference configuration of the pantographic structure and representation of the pivot
mechanisms.

the corresponding one in the other family, i.e. the fibre in the other family connected
to it by the pivot, see Fig. 3.17). Each fibre element of length Li (Li is the distance
between two adjacent pivots in the current configuration) is then modelled as an Euler–
Bernoulli beam, endowed with a stretching energy Wi

s and a bending energy Wi
b. The

total number of fibre elements is denoted by M.
The deformation energy, which by a numerical minimisation makes it possible to

determine equilibrium configurations, is defined as follows: for a single fibre element i

of length Li we have an elastic energy depending quadratically on axial strain (stretching
energy):

Ws =
M∑
i=1

1

2

ˆ Li

0
EAε2 dx, (3.19)
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Figure 3.18 Representation of pivot energetic terms.

and curvature (bending energy)

Wb =
M∑
i=1

1

2

ˆ Li

0
EIκ2 dx. (3.20)

Referring to Fig. 3.18.a, a pivot torsion energy term can be written as follows:

Wp =
Np∑
i=1

1

2
kp

(π
2
−�αi

)2
, (3.21)

where �αi represents the change of the angle between two intersecting fibres in the
deformed configuration with respect to the reference configuration. In [52] an additional
energetic term is considered that allows us to describe the (possible) sliding of fibres
in at the interconnecting pivots. We will consider this possibility in Chapter 6 about
experimental methods.

The total potential energy is thus given as

W = Ws +Wb +Wp. (3.22)

Now by considering the minimum of potential energy,

δW = 0, (3.23)

we can obtain the equilibrium configurations. It is evident that the problem presented
cannot be solved analytically. The Ritz approach is employed in [52] to solve this
problem, and consists in discretising the energy (3.22) and minimising it, after having
introduced some shape functions for the displacement. For all the details we refer the
reader directly to the article. In Fig. 3.19, a comparison between the calculated deformed
shapes and the measured is shown.

3.2.6 Second Gradient Homogenized Model

In order to make this chapter self-contained we now present again the central fea-
ture in the field of pantographic metamaterials which is the 2D continuum macro-
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Figure 3.19 Comparison between experimental (right) and numerical (left) shapes of the
pantographic structure. They differ in the imposed displacement: (a) 0.014 m, (b) 0.037 m,
(c) 0.048 m, (d) 0.054 m.

model obtained via homogenization of the discrete Hencky-type micro-model presented
previously. Expanding in truncated Taylor series the kinematic map as explained in
[28], we can compute the micro-placement field of material particles at the nodes of
the reference lattice by using the values, in such nodes, of a regular macro-placement
and its first gradient. Such a map determines a unique micro-motion once a macro-
motion is given. The micro–macro transition is obtained by equating the micro-strain
energy with the macroscopic counterpart, thus obtaining a macroscopic Lagrangian
surface density of strain energy in terms of the constitutive coefficients appearing in
the postulated expression of the micro-strain energy. Numerical simulations with both
discrete and homogenized models show that the homogenized model is representative
of the microscopic response [50, 51]. Following the notation introduced above, we
now consider a 2D continuum whose reference shape is given by a rectangular domain
� = [0, Nε] × [0, Mε] ⊂ R

2. Very often, it is assumed that N = 3M , which, as we
have already remarked, is the standard relation between the width and height of a fabric
specimen for experimental and numerical tests. If we want to study only planar motions,
then the current shape of the rectangle � is mathematically described by regular macro-
placement χ : � → R

2. Following the so-called Piola’s Ansatz, it is chosen that
pi,j = χ(Pi,j ) ∀i = 1, . . . , N , ∀j = 1, . . . , M . Assuming that χ(·) is at least twice
differentiable at Pi,j , the following second order approximations are obtained

‖pi+1,j − pi,j‖ = ‖χ(Pi+1,j )− χ(Pi,j )‖ � ε‖F (Pi,j )D1 + ε

2
∇F (Pi,j )|D1 ⊗D1‖,

(3.24)

‖pi,j+1 − pi,j‖ = ‖χ(Pi,j+1)− χ(Pi,j )‖ � ε‖F (Pi,j )D2 + ε

2
∇F (Pi,j )|D2 ⊗D2‖,

(3.25)
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where F denotes the deformation gradient ∇χ. Further details can be found in [28, 50,
51]. Equations (3.24) and (3.25) present the ε-truncated Taylor expansion of the first and
the third addends in Eq. (3.18) (extensional terms). Letting ε → 0 one finally recovers
the homogenized terms. To homogenize the bending and torsional energetic terms, it
is necessary to rewrite the three angles ϑαi,j (α = 1, 2) and ϑ3

i,j as functions of the
macro-placement χ. Specifically, we express the cosines of these angles in terms of χ.
Using analogous Taylor expansions to those in Eq. (3.25), neglecting o(ε2) terms, and
writing all quantities in terms of the displacement χ, the strain energy of the micro-
model becomes

U ({pi,j }) =
∑
j

∑
i

∑
α

kαi,j

2
ε2
(
‖F (Pi,j )Dα + ε

2
∇F (Pi,j )|Dα ⊗Dα‖ − 1

)2

+
∑
j

∑
i

∑
α

bαi,j

[
‖∇F (Pi,j )|Dα ⊗Dα‖2

‖Fi,jDα‖2

−
(

F (Pi,j )Dα · ∇F (Pi,j )|Dα ⊗Dα

‖Fi,jDα‖2

)2
]
ε2

2

+
∑
j

∑
i

b3
i,j

2

∣∣∣∣arccos

(
F (Pi,j )D1 · F (Pi,j )D2

‖F (Pi,j )D1‖ · ‖F (Pi,j )D2‖
)
− π

2

∣∣∣∣ξ .

(3.26)

Rescaling the rigidities as

kαi,j = K
α
e ; bαi,j = K

α
b ; b3

i,j = Kpε
2, (3.27)

and letting ε→ 0, the strain energy of the macroscopic system reduces to

U (χ(·)) =
ˆ

�

∑
α

K
α
e

2
‖FDα − 1‖2dS

+
ˆ

�

∑
α

K
α
b

2

[
‖∇F |Dα ⊗Dα‖2

‖FDα‖2
−
(

FDα · ∇F |Dα ⊗Dα

‖FDα‖2

)2
]

dS

+
ˆ

�

Kp

2

∣∣∣∣arccos

(
FD1 · FD2

‖FD1‖ · ‖FD2‖
)
− π

2

∣∣∣∣ξ dS.

(3.28)

The homogenized energy in Eq. (3.28) can be used to perform numerical simulations:
in Fig. 3.20, numerical simulations of the BIAS extension test and shear test are shown.
Such a homogenization process can be used to support the argument that the description
of pantographic fabric at a certain macro-level requires the use of second gradient
continua.

Numerical Identification of Homogenized Model
A general problem in building scientific theories consists in identification of the con-
stitutive parameters of a model. Typically, the identification of constitutive parameters
is based upon a comparison between the model and reality by performing experiments.
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Figure 3.20 BIAS extension test (a) and shear test (c) of a pantographic lattice. In the right images
the ‘fibre’ directions are shown.

In cases where more than a single model can be used to describe the phenomena, there
is an opportunity for mutual identification of parameters of two selected models. In the
case of pantographic structures we have the three models introduced above (i.e. micro,
meso and macro). Furthermore, these structures could be modelled in a rather crude
manner using the standard Cauchy continuum theory. Here we describe an identification
between the homogenized second gradient model, whose energy is (3.28), and a discrete
model based upon standard Cauchy theory.

To this end, in [50], the parameters K
α
a , K

α
b and Kp appearing in the strain

energy (3.28) (assumed to be independent of the position and family of beams) are
identified numerically, i.e. they are calibrated by means of some numerical computations
performed with the 3D Cauchy model for isotropic and homogeneous elastic materials
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Figure 3.21 The two control angles employed in the identification procedure.

undergoing arbitrarily large strains. BIAS extension test simulations [53] have been
performed using both the standard Cauchy model and the second gradient one. For
identifying the constitutive parameters it has been decided to compare the computed
energy and two independent deformations at specific points of the lattice, the angles ψC

and ψV shown in Fig. 3.21, i.e. the angles at the center C of the specimen and at the
corner V of the ‘quasi-rigid’ triangle near the short side of the pantographic fabric.

The material parameters of the macro-model Ke, Kb and Kp are estimated by min-
imisation of the squared errors for the energy and the two angles ψC , ψV , computed
both with the homogenized and the discrete Cauchy models . The choice of the two
angles ψC , ψV , instead of other possible quantities, is justified by the fact that it is
possible to relate their change to one of the last two energy terms Eq. (3.28), each one
depending only on one parameter: the energetic term involved in the variation of ψC is
mostly governed by the parameter Kp, while the variation of ψV depends especially on
the bending energetic term related to Kb. This fact allows us to find the minimum of
the squared error by separately tuning Ke and Kb. The last parameter Ke is obtained by
considering the whole stored energy.

Astounding Power of the Second Gradient Homogenized Model
As a preliminary conclusion of this chapter we show the astounding simulations in
Fig. 3.22. In this figure, which inspired the analysis in [54], two comparisons between
numerical simulations performed with two different models in the same BIAS extension
test are shown. We have already described the results in Fig. 3.22a obtained by using a
model which consider the fibres composing the pantographic fabrics modelled as non-
linear Euler–Bernoulli beams. We have remarked that this particular ‘meso’ model has
been used in the case of pantographic structures which are composed of very few fibres.
In that case, in fact, the hypothesis of a continuum (an effective 2D continuum) is not
well-suited and we are obliged, at least in principle, to use a model which is intermediate
between the discrete and the continuum ones.

Let us consider Fig. 3.22b. The simulation presented in this figure has been per-
formed by minimising the second gradient energy reported in Eq. (3.28), modified
by an additional term which takes into account the possibility that the fibres of the
two families slide one with respect to the other at their interconnecting pivots. This
additional term was considered for the first time in [55]. The consequence of includ-
ing this additional term will be further discussed in the chapter about experimental
methods in pantographic structures and their damage/fracture behaviour based upon
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Figure 3.22 Comparison between simulation performed by using the ‘meso’ non-linear
Euler–Bernoulli beam theory-based model (a) and the homogenized second gradient model (b).

the results obtained in [55]. We note that in [52], which has been presented above, an
analogous additional term can be recognized. However, it is remarkable and surprising
that a continuum homogenized model is capable of replicating results in the case of a
specimen with so few fibres. Clearly, the inclusion of second gradient terms enriches the
model sufficiently to capture phenomena that are otherwise not modelled based upon the
standard Cauchy theory.

3.2.7 Higher Gradient Elastic Surfaces

In the preceding discussions, we have focused upon the pantographic lattice represented
as a 2D object undergoing planar deformations, as in the case of the BIAS extension
and the shear tests. However, it is possible for a 2D surface, planar in the reference
configuration, to undergo out-of-plane deformations. Needless to say, we can envision
a torsion experiment of the considered surface – which has now to be considered as
embedded in 3D space – but we can also have cases in which in response to a planarly
imposed deformation (as in the BIAS or in the shear tests) the 2D surface suffers
some out-of-plane buckling or wrinkling deformation. To describe the topology of this
out-of-plane deformation we are then obliged to generalize the presented model of a
pantographic lattice to consider the embedding of the pantographic surface in a 3D
space. The possibility of modelling out-of-plane deformations has been widely explored
in work by dell’Isola, Steigmann et al. [1, 56–58] and recently by Giorgio, Rizzi et al.
[59]. Here we consider the fundamental points of the two approaches.

In [60] the pantographic lattice is considered as an elastic surface embedded in a
three-dimensional Euclidean space. To account for the geodesic and out-of-plane bend-
ing of fibres, the deformation gradient is defined in the following way, wherein the fibres
are considered to be oriented along the two material directions of a Lagrangian Cartesian
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orthonormal coordinate system, whose associated basis of unit vectors is (D1, D2),
denoted in the same manner as used previously:

F = d1 ⊗D1 + d2 ⊗D2, (3.29)

where d1 and d2 are defined as the push-forward vectors in the current configuration of
the vectors D1 and D2 respectively, i.e. dα = FDα, α = 1, 2. If we denote the fibre
stretches ‖Dα‖ as λ and μ, then Eq. (3.29) can be rewritten as

F = λd̃1 ⊗D1 + μd̃2 ⊗D2, (3.30)

where d̃α = dα
‖dα‖ are the unit vectors associated with dα.

These vectors are used to define the fibre shear strain γ as sin γ = d̃1 · d̃2 [28, 60].
From Eqs. (3.29) and (3.30) the right Cauchy–Green tensor reads

C = F TF = λ2D1 ⊗D1 + μ2D2 ⊗D2 + λμ sin γ (D1 ⊗D2 +D2 ⊗D1) , (3.31)

and

Jn = FD1 × FD2 = d1 × d2, (3.32)

where n is the unit normal vector to the deformed surface field, and J = λμ| cos γ|. The
second gradient of the displacement is proven to have the following expression

∇∇χ = (g1 +K1n)⊗D1 ⊗D1 + (g2 +K2n)⊗D2 ⊗D2

+ (� + T n)⊗ (D1 ⊗D2 +D2 ⊗D1) , (3.33)

with

g1 = λη1p + (D1 · ∇λ) D̃1; g2 = μη2q + (D2 · ∇μ) D̃2, (3.34)

� = (D1 · ∇μ) D̃2 + λμφ1q = (D2 · ∇λ) D̃1 + λμφ2p, (3.35)

q = n× D̃2; p = n× D̃1, (3.36)

K1 = λ2κ1; K2 = μ2κ2; T = λμτ , (3.37)

where η1 and η2 are the geodesic curvatures of the deformed fibres, φ1 and φ2 the so-
called Tchebychev curvatures, κ1 and κ2 the normal curvatures of the deformed fibres,
and τ the twist of the deformed surface. For the technical details about geodesic and
Tchebychev curvatures we refer directly to [1, 56–58]. We can lastly write a strain
energy density function depending on the first and second gradients of the deforma-
tion [58]:

W = w(λ,μ, J )+ 1

2

(
A1|g1|2 + A2|g2|2 + A�|�|2 + k1K

2
1 + k2K

2
2 + kT K2

T

)
,

(3.38)

where A1, A2, A� , k1, k2, kT are constitutive constants.



Pantographic Metamaterial: A (Not So) Particular Case 129

Figure 3.23 Numerical simulation of torsion of a square pantographic sheet (the angle of torsion
is θ = 60°) performed by using the elastic surface model.

Figure 3.24 Bias extension test on parabolic pantographic fabric (a). Out-of-plane buckling is
observed after critical loading (b). Simulation of bias extension test on parabolic pantographic
fabrics (c).

In Fig. 3.23 numerical simulations of the torsion of a square sheet using this model are
shown. Many fibre reference curvatures have been considered (e.g., sinusoidal, spiral,
parabolic fibres) and, for parabolic fibres, experiments (Figs. 3.24a and 3.24b) and the
model (Fig. 3.24c) both show that, after a critical load, out-of-plane buckling occurs dur-
ing bias extension, because the transverse (curved) beams in the middle of the specimen
undergo buckling induced by the shortening of the middle width of the specimen.
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A 2D continuum model embedded in a 3D space has also been proposed [59] where,
relying on a variational framework, the following strain energy density is proposed:

π = 1

2

{
Ke

[(
ε1
)2 +

(
ε2
)2
]
+ Ksγ

2 (3.39)

+Kt

[(
κ1

1

)2 +
(
κ2

1

)2
]
+ Kn

[(
κ1

2

)2 +
(
κ2

2

)2
]
+ Kg

[(
κ1

3

)2 +
(
κ2

3

)2
]}

.

It corresponds to a system of two orthogonal continuous families ‘1’ and ‘2’ of straight
shear-undeformable beams arranged along the coordinate axes in the reference con-
figuration and resembling the pantographic microstructure. The fibres of family α are

parallel to the direction êα. The contributions 1
2 Ke

(
ε1
)2

and 1
2 Ke

(
ε2
)2

stand for the
elongation of fibres belonging to, respectively, the families 1 and 2. The strain measure
εα, with α = 1, 2, is defined as

εα =
∥∥∥∥ ∂ χ

∂Xα

∥∥∥∥− 1, (3.40)

and Ke ∈ [0,∞) is the corresponding stiffness, which is assumed to be the same for
both families of fibres. The contribution Ksγ

2 is accounting for the shear deformation
of the sheet, i.e. it is due to the relative rotation of two orthogonal intersecting fibres.
It represents the strain energy stored in the pivot because of its torsion, of angle γ. The
strain measure γ ∈ [−π

2 , π2 ], also referred to as the shear angle, is expressed as

γ = arcsin
∂ χ
∂X1

· ∂ χ
∂X2∥∥∥ ∂ χ

∂X1

∥∥∥ ∥∥∥ ∂ χ
∂X2

∥∥∥ (3.41)

and Ks is a positive constitutive parameter.

The terms 1
2

[
Kt

(
κ1

1

)2 + Kn

(
κ1

2

)2 + Kg

(
κ1

3

)2
]

and 1
2

[
Kt

(
κ2

1

)2 + Kn

(
κ2

2

)2 +
Kg

(
κ2

3

)2
]

are due to twist, normal bending and geodesic bending of beams belonging,

respectively, to families 1 and 2 of the fibres. The strain measures κα1 , κα2 , κα3 are the
coordinates, in the augmented levorotatory reference Cartesian frame, of the axial vector
corresponding to the skew tensor Wα = (Rα)T ∂Rα

∂Xα
, which is the so-called current

curvature tensor. The orthogonal tensor Rα transforms the augmented levorotatory
reference Cartesian frame vectors into the following ordered triplet: i) the unitary vector
tangent to the deformed coordinate line α; ii) the unitary vector normal to the previous
one and lying in the plane tangent to the deformed surface; iii) the unitary vector normal
to the plane tangent to the deformed surface. Explicit (lengthy) derivations can be
found in Ref. [59]. Using the above model, shear test simulations have been performed
reporting the occurrence of out-of-plane buckling (Fig. 3.25).

3.2.8 Dynamics

The final theoretical aspect in the framework of pantographic metamaterial we want
to discuss here consists in the study of the dynamics of pantographic structures. One



Pantographic Metamaterial: A (Not So) Particular Case 131

Figure 3.25 Shear test. Qualitative buckled shapes of the first two bifurcation modes. Colours
indicate values of the out-of-plane displacement. (a) First and (b) second buckling modes.

can imagine several (completely different) dynamical problems involving pantographic
fabrics, but, clearly, the one that emerges naturally is the phenomenon of wave propaga-
tion in pantographic wave-guides. This application of pantographic structures has only
recently been investigated and its research horizons are yet unexplored.

In [61], a first model for studying dynamics in pantographic fabrics, regarded as ‘long’
wave-guides, has been introduced and, subsequently, has been employed in [62, 63].
The main idea is to set time-dependent boundary displacements inducing the onset of
travelling waves. The impulse function I = u0 ∗ sech [τ (t − t0)], where the parameter
τ controls the pulse duration is used as the prescribed displacement. Figure 3.26 shows
the reference configuration of the pantographic sheet (on the left), where the frictionless
hinges, representing perfect pivots, do not interrupt the continuity of the fibres, and (on
the right) the impulse function representing the prescribed displacement.

Numerical simulations based upon the homogenized second gradient macromodel
previously presented were performed to obtain deformed shapes of the pantographic
wave-guide. Figure 3.27(left), gives the results for the case of a propagating wave that
originates due to a vertical impulse applied on the upper short side, while the opposite
short side is clamped. The deformed shapes in Fig. 3.27(right) are obtained by imposing
a double impulse (i.e. a couple of equal opposite displacements) applied at the middle
height of the specimen. These displacements are applied at two points at the opposite
ends of two adjacent beams, i.e consecutive beams belonging to the same orthogonal
family of 1D continua, and their amplitude over time is shown in Fig. 3.26.

First experimental observations of the dynamical behaviour of pantographic metama-
terial have recently been performed and are reported in [77]. Other studies on dynamics
relevant to the analyses here presented can be found in [78–86].

3.3 Conclusion

The pantographic metamaterial represents a class of metamaterials precisely defined
by its microstructure. In this chapter we have limited our attention to 1D and 2D
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Figure 3.26 Reference configuration(left) and time history of the impulse (right).

Figure 3.27 Qualitative displacement plot of a wave propagating after a prescribed vertical
displacement on the upper side (left). Wave propagating after double impulse (right).

pantographic metamaterials. The extension to the synthesis of such 3D constructs is
quite feasible regardless of the theoretical and technological challenges.

A fundamental characteristic of pantographic metamaterial, which is also a motiva-
tion for dedicating a whole chapter to this metamaterial, is the fact that it represents
an archetype of theory-driven design. We have widely remarked that the genesis of
pantographic structures was in response to a very simple question. Can we conceive and
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realize a material system whose energy consists of a purely second gradient type? At
the level of the micro-structure, as we have shown, it is necessary to consider a structure
which exhibits, locally, a wider class of floppy modes than just rigid motions. This is the
rationale that first stimulated us to conceive an ideal pantograph. In strict adherence to
the spirit of the theory-driven research approach nothing has been randomly explored.
We have shown here how the answer to a basic question originating in the theory was
developed and, further, how this development led to the many theoretical predictions
found through numerical computations. To validate the followed approach, an essential
aspect is to devise methods for experimentally demonstrating the predictions. In
the chapter about experiments in pantographic structures, experimental observations
and their relation with modelling will be treated in detail. In particular, a novel
approach, based on digital image correlation [73–76], will be presented and exploited
to perform very precise analyses of displacement and deformation in pantographic
structures.
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4 Naive Model Theory: Its
Applications to the Theory
of Metamaterials Design
F. dell’Isola, E. Barchiesi, A. Misra

4.1 Introduction

In the online Stanford Encyclopedia of Philosophy1 one finds an accurate account of
formal modern model theory, with a careful description of the underlying philosophical
and mathematical arguments. Model theory was developed, in a more recent époque, by
Alfred Tarski. It appears though that (see the Forgotten Revolution by Lucio Russo [1])
Hellenistic scientists had already found and systematically used many of its deepest con-
cepts, as also the developments in pre-classical Indian science (e.g. As. t.ādhyāyı̄ of Panini
and Caraka-sam. hitā) were underpinned by logic and epistemological considerations.2

4.1.1 Why Naive Model Theory?

In the aforementioned entry3 one finds the statement:

To model a phenomenon is to construct a formal theory that describes and explains it.

Indeed, it is well accepted that a (mathematical) model is a theory which describes
existing objects and/or already observed phenomena. In other words, a physicist is
assumed to observe the phenomena occurring within existing systems and, subsequently,
to find models which allow their descriptions as well as the possibility of forecasting
what has not yet been observed.

However, very often, physicists and engineers model objects which do not already
exist, but whose existence may be desired. Indeed, in the same entry, one finds the
following sentence immediately after the previous one:

This chapter is dedicated by FdI to the memory of Professor Luigi De Luca, his beloved uncle. Professor
De Luca mentored generations of students, educating them in the use of rationality by teaching ancient
Greek, Latin, Grammar, Syntax and Epicurean Philosophy of Science. The scientific studies of FdI were
inspired by his guidance and tutorship. The material presented herein reflects and has been inspired by his
deep understanding of Science.

1 See the entry Model Theory at https://plato.stanford.edu/entries/model-theory.
2 See the entries Epistemology in Classical Indian Philosophy at https://plato.stanford.edu/entries/

epistemology-india/ and Logic in Classical Indian Philosophy at https://plato.stanford.edu/entries/
logic-india. Also The Encyclopedia of Indian Philosophies: Indian metaphysics and epistemology edited
by Karl H. Potter, 1977, Motilal Banarsidass, New Delhi.

3 See Footnote 1.
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In a closely related sense, you model a system or structure that you plan to build, by writing a
description of it.

The formal study of the (meta-) theory needed to describe the structure of a theory
(and also the possible ways of finding its meaning) remains an attractive challenge in
modern mathematics just as it was in the ancient times. Needless to say, such a study
is well beyond the intended scope of this chapter. The reduced ambitions of our pre-
sentation, therefore, follow what is done when mathematicians decide to present Naive
Set Theory. In the Introduction of his celebrated mathematical textbook Paul Halmos
writes:

Every mathematician agrees that every mathematician must know some set theory; the
disagreement begins in trying to decide how much is some. This book contains my answer to that
question. The purpose of the book is to tell the beginning student of advanced mathematics the
basic set-theoretic facts of life, and to do so with the minimum of philosophical discourse and
logical formalism. [. . . ]. From this point of view the concepts and methods of this book are
merely some of the standard mathematical tools; the expert specialist will find nothing new here.
Scholarly bibliographical credits and references are out of place in a purely expository book
such as this one. The student who gets interested in set theory for its own sake should know,
however, that there is much more to the subject than there is in this book. One of the most
beautiful sources of set-theoretic wisdom is still Hausdorff’s Set Theory. A recent and highly
readable addition to the literature, with an extensive and up-to-date bibliography, is Axiomatic
Set Theory by Suppes.

Halmos’ preface is so elegant and communicative that we do not dare to rephrase it
in accordance with the subject of the current chapter. Si parva licet componere magnis
(Virgil, Georgics, IV, 176, i.e. in Dryden’s translation [2]: If little things with great we
may compare) we believe that the reader will understand the spirit of the present chapter
by replacing in the previous citation:

i) the words mathematics and mathematician with, respectively, the words mechan-
ics and mechanician or the word engineering sciences and engineer;

ii) the word set with the word model;
iii) the references about set theory cited by Paul Halmos with those about model

theory cited several times in the above mentioned entry.

4.1.2 Do Mechanicians, Engineers or Applied Scientists Need Model Theory?

The first part of this book is intended to cover those topics from the theory of metama-
terials design which we believe to be interesting and topical. One might legitimately ask
why we have decided to insert here a chapter which deals with a topic that appears to be
more pertinent to the philosophy of science, and is not generally regarded as relevant to
engineering sciences or mechanics.

An initial answer could be found by invoking the principle of authority. The subject
of mechanics, as a part of physics and engineering sciences, in its contents and setting,
has been elaborated by many generations of scientists and natural philosophers. In
all presentations – even those that may be considered at the bottom of the heap both
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from the scientific and technological (when considering the selection of topics) and the
pedagogic (when considering the way in which the selected topics are explained) points
of view – there is an attempt to base the discipline starting from a sound analysis of
its scientific principles. Although at times this attempt is pursued only by means of
subterfuge: namely, by use of esoteric language.4

Further, during the Renaissance, the foundations of mechanics due to Hellenistic
Science were rediscovered, among others, by Galileo, Euler, at least two members of
the Bernoulli family, Lagrange, Navier, Cauchy, Saint-Venant, Maxwell, and Beltrami.
And since the establishment of the École Polytechnique in Paris, theoretical mechanics
has become a part of the fundamental cultural background of any engineer. Indeed,
mechanics is not a professionalizing discipline, as it does not directly deal with the
technical rules for the safe and efficient design of engineering artifacts.5 Instead, the
ultimate goal of teaching mechanics is to bring to the knowledge of engineering schol-
ars, and future professionals, those mathematical models that describe, in a unified and
synthetic treatment, the many phenomena whose description is necessary for the design,
control and prediction of the behavior of a great number of devices which are relevant
for topical technology.

However, mechanics is not a basic discipline for engineering as are mathematics,
physics, or chemistry. Indeed, when modeling the mechanical phenomena involved in
the behavior of complex structures, one has to keep in mind the simplifying assumptions
necessary to obtain mathematically tractable models which, still, have to be capable
of describing the non-trivial phenomena of interest in the engineering applications.
Hence, its treatment cannot and must not be purely deductive because, otherwise, we
would confuse mechanics with a part of the mathematics it uses. Moreover, the study
of mechanics for engineers should not be as general and fundamental as the study
of physics or chemistry tends to be. Indeed, in mechanics, the scope of modeling is
usually confined to a special class of phenomena, always keeping in mind the potential
uses of the introduced models in the engineering practice. This explicitly stated self-
limitation to the scope of its interests should not be misunderstood: recently, models
traditionally developed in classical mechanics have proven to be topical and modern,
playing a crucial role in the development of new and important technologies. Models
developed in the framework of classical mechanics make it possible to deal, for instance,
with those mechanical phenomena involved in biomechanics, piezoelectricity, magne-
tostriction and ferromagnetism, which are proving to be very important in many fields of
environmental, biomedical, aerospace, electronic and telecommunications engineering.

The vision presented above is widely shared by those who, in the past, faced the
problem of selecting topics for monographs in mechanical sciences targeting an audi-
ence of scholars and students. Even if conceived many decades ago, in our opinion, the

4 Of course, the esoteric language which is more likely to impress the layman is the one provided by
mathematics. The desired effect is more easily pursued the more recent is the formalism employed and,
hence, the more restricted is the group of readers sufficiently familiar with it. Nevertheless, let us note that
languages for initiates, specific to people working in any specific part of mechanics, have been developed.
These languages are sometimes used only to claim their special status of abstract technologists.

5 Actually these rules are very important and their scientific, cultural and formative value must not, and will
not, be questioned here.
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textbooks dealing with structural mechanics by Colonnetti [3] and Baldacci [4] are very
inspiring. We found to be particularly illuminating the preface written by Colonnetti to
his oeuvre:

These pages –in which I have gathered the lectures I have given this year to my students of
Politecnico di Torino– reflect faithfully the pedagogical conception to which I inspire my
teaching; which is aimed, deliberately, to privilege the purpose of transmitting high culture and
in considering as secondary the purpose of transmitting knowledge to be used immediately in the
professional practice. The choice of the topics of my lectures has been based only on this
preoccupation: to offer to the scholar the fundamental principles, to deepen the study of their
meaning and scope of applicability, to see how it is possible to base on them a rational body of
doctrines, and to see how this body can be then, when it is necessary, used to solve concrete
problems. The topics which are more suitable to this aim have been completely developed. Other
topics, which by themselves are not less important, but which are less thought-provoking from
this point of view, have been totally or partially neglected. [Boldface is by the authors] The
reader will not find here the usual gathering of already given solutions, which he can apply
-sometimes appropriately and sometimes not appropriately- to all problems which the
technical practice will present to him. On the contrary, he will learn how to analyze and how
to solve each among those problems, clearly understanding the value of the hypotheses on
which the solution is based and clearly evaluating the degree of approximation that is
accepted in finding such a solution.

In the same vein, we also found instructive discussions in the more modern texts used
at Ecole Polytechnique by Germain [5] or by Salençon [6].

For those who are content to conform to the most recognized authorities in the field
of theoretical mechanics, the above arguments for the necessity of the ensuing presen-
tation may suffice. The principle of authority alone, however, is not enough to motivate
the choice of presenting ideas of model theory in the present context. To support our
arguments for this class of readers, we shall pursue an alternative line of reasoning.

In every textbook of structural mechanics, the fundamentals of beam theory and of
the theory of deformable bodies are addressed, and these theories are regarded as a
fundamental part of the education of an engineer. These theories study the mechanical
behavior of some particular constrained structures when subject to external loads. In
these theories, the same (slender) body, subject to a given system of loads, is modeled
in ways which can be very different one from another, such as:

1. using the Euler–Bernoulli planar beam model, the kinematics of the body is
described by means of its axial line and its resistance by means of one or, at
most, two rigidities (flexural and extensional); or

2. using the Timoshenko model, such a kinematics is further specified by introducing
the field of rotations of its cross-sections (i.e. transversal to the axial line) so that,
at least, a shear rigidity has to be added; or

3. using the Cauchy approach (even considering only small deformations), the
kinematics of the same body is very involved, being characterized by a field of
displacements defined over a three-dimensional shape of the body, customarily
referred to as the reference shape, while in general, in order to describe deforma-
bility, 21 rigidities are needed;
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4. using an atomistic theory (this was the approach initially employed, for instance,
by Navier) the kinematics is the one of many moles (in the sense of Avogadro) of
material particles linked between each other;

5. from here a very detailed description of the deformation undergone by the con-
sidered body) by central elastic forces.

Note that a (naive) empiricist’s analysis of the above list of descriptions of the same
physical object could conclude that each of those descriptions is more realistic than the
preceding one. At the outset one has to admit, however, that such an analysis would
lack plausibility given the fact that the chosen order is not chronological. Even more
tough would be finding the reasons why the use of some quantum-relativistic theory,
employing quarks or some other even more elementary constituents of matter, is not
being proposed and considered. Clearly, this regression toward the infinitely detailed,
attempting to identify the real nature of the mechanical systems under study, is hopeless,
because at this level of detail it is not even feasible to study the behavior of very simple
structures used in many applications.

A more appropriate approach is the one proposed in the context of model theory (an
elegant but elementary presentation can be found, for instance, in the beautiful essay by
Aris [7]): we abandon the effort to uncover the true nature of the considered physical
entity, and instead we limit ourselves to modeling some of its relevant aspects in a
specific class of situations and phenomena.

We note that a Cauchy model is appropriate when studying in detail the deformation
of cross-sections of the slender body; that the Euler model is appropriate when such
deformation is negligible, leaving the cross-sections orthogonal to the axial line; and
that the Timoshenko theory is useful when shear deformations, namely orthogonality
defects of the cross-sections, actually occur and are relevant.

As far as is known, study of the structure of an airplane’s wing at the atomic level, or
at speeds close to the speed of light, has not been of immediate use, even if it may not be
wise to exclude the possibility that such needs might occur in future. Note (the reader
is again referred to Aris [7] and to the handbook The Man-made World. Technology
Foundation Course of the Open University [8, 9]) that the various models of deformable
bodies and framed structures proposed above can be systematically referred to as suc-
cessful case studies. In the context of the general statements of model theory, it is seen
that these combine the rare characteristics of being easy to handle and of being able to
provide a description of reality which is satisfactory for many engineering applications.
These peculiar characteristics are the most desirable ones in every mathematical model
of a physical phenomenon.

It is very likely that the approach frequently (and positively) adopted by scholars in
mechanical sciences and structural mechanics towards epistemology can be explained
without invoking unnecessary psychological theories (as sometimes the most reluctant
among their students may try to do). Indeed, a familiarity with the many models of
deformable body which were developed in the various periods of the history of mechan-
ics – together with the required ability to pass from one description to another, while the
physical entity to be described remains the same – and the need to establish the possible
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relations between such different descriptions do have an important effect on their way
of reasoning. They develop a great sensitivity to the most delicate issues of the philos-
ophy of science. Indeed, they are quite often simultaneously inclined to the study of
applications, to the related mathematical abstractions and to metaphysical discussions.
The tendency to be extremely precise in their conversations, together with an almost
obsessive carefulness in choosing words, are also among their peculiar characteristics.

These characteristics are obviously motivated if one considers that, when dealing
with many models (as in their studies), it is very important to distinguish, by assigning
to them different names, the entities involved: physical entities, which belong to the
world of phenomena they are aimed at describing (e.g. deformable bodies), and abstract
ones, which are employed as mathematical models of the physical entities (e.g. Euler
beam, Timoshenko beam, Cauchy continuum). We note that the same physical object,
in different physical situations, is modeled with different, and seemingly contradictory,
mathematical models.

The classical case of such a multiplicity of models was already known, most likely,
by Archimedes (see also [1]). Indeed, when studying the theory of floating bodies,
Archimedes assumed the surface of the sea to be planar, even if it was known to him that
the Earth is spherical, as had been definitively proven by his contemporary Eratosthenes.
Archimedes knew well, indeed, that the laws governing the floating of a ship can be
formulated by assuming that the involved part of sea is planar, to the extent that the
dimensions of the ship are small compared with the radius of the Earth. Archimedes
also knew, from Aristarchus, that the structure of the Universe was more complex
than had been believed initially. Aristarchus’ original text has been lost, but a quote in
Archimedes’ work The Sand Reckoner describes it. We know that Aristarchus proposed
the heliocentric model, as an alternative model to geocentrism. Thomas Heath gives the
following English translation of Archimedes’ text:

You are now aware [“you” being King Gelon] that the “universe” is the name given by most
astronomers to the sphere the centre of which is the centre of the earth, while its radius is equal
to the straight line between the centre of the sun and the centre of the earth. This is the common
account (τά γραφόμενα) as you have heard from astronomers. But Aristarchus has brought out
a book consisting of certain hypotheses, wherein it appears, as a consequence of the assumptions
made, that the universe is many times greater than the “universe” just mentioned. His hypotheses
are that the fixed stars and the sun remain unmoved, that the earth revolves about the sun on the
circumference of a circle, the sun lying in the middle of the orbit, and that the sphere of the fixed
stars, situated about the same centre as the sun, is so great that the circle in which he supposes
the earth to revolve bears such a proportion to the distance of the fixed stars as the centre of the
sphere bears to its surface.

The reader will remark that Archimedes seems to use a sophisticated version of Popper’s
falsificationism. Indeed, Popper’s ideas can be condensed in a nutshell by stating that he
envisions science as a process of, sequentially, formulating theories and, successively,
rejecting them, as they are shown to be false by experimental evidence. Rejected theories
must be replaced by other theories, wherein the latter address and fulfil anomalies not
contemplated in the prior theory. In other words, a theory which replaces a theory shown
to be false must have a greater explanatory power.
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The preceding observations suggest that Archimedes may be seen as an ancient (a
precursor of) Popper.6 We note that he writes “This is the common account as you have
heard from astronomers,” “But Aristarchus has brought out a book consisting of certain
hypotheses, wherein it appears, as a consequence of the assumptions made, that the
universe is many times greater than the ‘universe’ just mentioned.” “His hypotheses are
that.” Clearly, Archimedes knew about the conjectural value of scientific hypotheses.

Attempting to avoid the distinction between physical objects and their models
almost always results in an inextricable confusion of concepts and meanings. In the
Archimedean example, one could seek clarification by asking if the external surface of
the Earth, for Archimedes, was spherical or flat. Many historians, after reading only
his works on floating bodies, claimed that Archimedes had a limited understanding of
cosmological theories. Archimedes seems to master perfectly the distinction between a
physical object and its different models, as a reader of his On the Method can readily
conclude.

Finally, the needful comparison between the performances of different models can
explain the dichotomous tendencies shown by mechanicians: one towards metaphysics
and the other to the necessity to choose different names for the different mathematical
entities which are, in different situations, used to describe the same physical entity. Since
a reasonable mastery of mechanics requires the use of different abstract and specialized
languages, very often the students of engineering do not accept its usefulness, thinking
it is puzzling and far from the practise.

To readers who, at this juncture, are still unconvinced of the value of the following
sections we suggest, tout simplement, to skip them. Their position is as respectable
as the one represented by the partisan literature cited to support the choices made
in this chapter. The oldest known advocate of the uselessness of model theory and
of its underlying vision was Sextus Empiricus, as clearly appears from the first lines
of his Adversus Mathematicos. Together with a large number of his epigones, Sextus
Empiricus resolutely denies the usefulness of mathematical models in describing the
physical world. Sextus Empiricus writes (this citation is taken directly from Russo [1]):

If there is such a thing as mathema and it is attainable by humankind, it presupposes agreement
on four things: the thing which is taught, the teacher, the learner, and the method of learning.
However, the thing which is taught does not exist, nor does the teacher, the learner, nor the
method of learning, as we shall demonstrate. Therefore, there is no mathema. (see also Adv.
mathematicos I, §9, D.L. Blank’s translation: Against the Grammarians, Clarendon, Oxford,
1998). We agree with Russo in leaving the word mathema untranslated (in contrast with Blank’s
translation); its meaning is learning, study, or an object thereof.

6 It is more appropriate to state this in the reversed manner: that Popper is the modern Archimedes. It is
curious that a book could have the following title: Aristarchus of Samos, the ancient Copernicus; a history
of Greek astronomy to Aristarchus, together with Aristarchus’s Treatise on the sizes and distances of the
sun and moon (1913). If even Sir Thomas Little Heath, one of the most skilled historians of English
literature, the same who translated so brilliantly Archimedes, produced such a title, then one must
conclude that the superiority of modern intellectuals with respect to ancient ones will persist forever. After
having read the ancient text one should state, as well, and as admitted by himself, that Copernicus is the
modern Aristarchus.
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For those who go on to read the succeeding sections we have the following cautionary
message. It is possible to not fully appreciate the forthcoming examples before having
mastered (or at least become familiar with) the concepts explained in the other chapters.
This chapter is intended to reorganize the topics treated in the remaining part of the text.
Therefore, one could read the forthcoming sections as an epilogue, i.e. at the end of the
chapter, while many others could find them more useful as a prologue.

4.2 Morphisms

The most delicate aspect of our attempt to provide a logical representation of the physi-
cal world lies in the concept of the mathematical model. We want to explain this concept
in a precise and modern way, notwithstanding that the most basic concepts among those
which we discuss here are clearly present in the Archimedean On the Method. We
believe the formalism of modern abstract algebra to be one of the best suited ways
to provide the reader with the concept of mathematical model in a simple and concise
manner. We aim at giving a precise description of such a concept because the formidable
design challenges which we are required to face deserve such a treatment.

Metamaterials are complex systems whose (complex) behavior is what we want to
exploit in order to find novel, designed artificial materials of exceptional performance.
Therefore, when we consider metamaterials, (over)simplification is not a possibility. We
are not pursuing a simplified model to be applied to a specific and limited range of situa-
tions. In other words, we are not ready to sacrifice complexity for getting predictiveness.
We seek predictiveness without losing complexity.

Modeling complexity is a challenging task. Describing a complex system in relatively
minute detail is usually untenable even when employing powerful computational
tools in combination with advanced numerical codes. Therefore, to find a reasonable
compromise between the computational burden and the prediction capacity, a possible
option is trying to describe the same physical system by means of different mathematical
models, each one having a different range of applicability. In particular, we may decide
to use different models at different length scales. Then, we may try to use results
obtained by considering some prototype problems at a smaller length (micro) scale
as a tool for simplifying the study of a model valid at a larger (macro) length scale:
for instance, we may produce macroscopic constitutive equations, as is done in many
works dealing with the so-called homogenization procedures. Any confusion between
the different mathematical models which may be used must therefore be carefully
avoided.

In order to give a precise definition of the concept of mathematical model (we present
here an elaboration of what is explained in the Algebra handbook of the Open University
[10]) we have to resort to the algebraic notion of morphism, which follows below.

Let (X1, X2, X3) and (Y1, Y2, Y3) be two triples of sets. Let us define, for each of
these triples, a binary operation. Such an operation associates to each pair of elements
in X1×X2 (respectively Y1×Y2) an element of X3 (respectively Y3). If we denote with
the symbols � and � these two operations, respectively, we have:
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� : X1 ×X2 → X3,

� : Y1 × Y2 → Y3,
(4.1)

� : (x1, x2) ∈ X1 ×X2 �→ (x1 � x2) ∈ X3,

� : (y1, y2) ∈ Y1 × Y2 �→ (y1 � y2) ∈ Y3.
(4.2)

Moreover, let fi (i = 1, 2, 3) be a triple of injective maps from Xi to Yi :

fi : Xi → Yi , fi : xi ∈ Xi �→ fi(xi) ∈ Yi . (4.3)

We draw the following (commutation) diagram and consider the possibility that the
equality sign after the question mark could hold:

(x1, x2) ∈ X1 ×X2
−→� x1 � x2 ∈ X3

(f1, f2) ↓ ↘ f3

(f1 (x1) , f2 (x2)) ∈ Y1 × Y2 �−→ f1 (x1) � f2 (x2) ∈ Y3 ? = f3 (x1 � x2)

Indeed, the two possible “ways” starting from the pair (x1, x2), a priori, do not lead to the
same result.7 Namely, in general, the equality symbol at the right-bottom of the diagram
might not hold true. In the special case in which the two results always (namely, for
every pair (x1, x2)) coincide, the triple (fi) of applications is called morphism of the
algebraic structure (X1 ×X2 ×X3,�) into the algebraic structure (Y1 × Y2 × Y3, �) .

This formal definition may be off-putting to the reader. However, this abstraction is
necessary, and the forthcoming examples will help to clarify the concept of morphism
introduced above.

Example 4.1 The logarithm of a real positive number is a morphism of R, endowed with
the multiplication operation, into R, endowed with the addition operation, since

log(xy) = log(x)+ log(y).

Note that, in this case, the three sets Xi and the three sets Yi all coincide with R, and
all the three functions fis coincide with log. As already proved by Archimedes in his
Arenarius (the reader is referred to Boyer [11] and Russo [12]), such a morphism is very
useful when computing products of relatively large numbers. In fact, there appears to be
unanimity amongst historians of science that modern computing techniques started with
the publication of Napier’s tables of logarithms. These tables are the theoretical basis on
which Napier’s bones were constructed: Napier’s bones was a manually-operated

7 It is interesting that the validity of logical inference departing from a set of observations, i.e. the closure of
the above morphism diagram, was questioned by the ancient school of Indian materialism. Indeed,
Charvaka philosophy rejected inference as a means to establish universal knowledge, stating that,
whenever one infers a conclusion from a set of observations, he/she has to take into account doubt,
thereby considering inferred knowledge as conditional [Chandradhar Sharma. A Critical Survey of Indian
Philosophy. Publisher: Motilal Banarsidass; 13th edition (September 1, 2016) ISBN-10: 8120803655,
ISBN-13: 978-8120803657].
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calculating device created by Napier which some historians of science consider,
metaphorically, as one of the main flywheels of the first industrial revolution.

The senior authors of this chapter are old enough to have spent hours, in their middle
and high school days, in learning how to use Napier’s tables for computing the product
of large real numbers. The fact that, for a scientist, the relevance of this competence
has dramatically decreased in such a small time interval, combined with the fact that
even the memory of its importance has faded in one generation, should suggest some
considerations to the reader, particulary when contrasted to the fact that the content of
the Archimedean On the Method is still considered very topical even after more than 23
centuries.

Example 4.2 Let us now consider: a) an RLC circuit connected in series with a voltage
source V (t); and b) a material particle having mass m, moving on a given straight
line, subject to an assigned external force F (t), to a linear elastic restoring force with
constant k and a friction force proportional to the velocity, with viscosity coefficient μ.
In addition, let us consider: i) the operation which associates to the RLC circuit and
voltage source pair the capacitor charge signal Q(t) corresponding to a certain initial
state of the RLC circuit; ii) the operation which associates to the material particle
and external force pair the motion x(t) corresponding to a certain initial state of the
particle; and iii) the functions associating the RLC constants to the constants μ, m, k,
V (t) to F (t) and Q(t) to x(t) respectively (where all the considered quantities have been
suitably non-dimensionalized). Experimental evidence allows us to state that, in a wide
range of situations, the triplet of the above introduced functions, with respect to the
operations, is a morphism. When such a morphism between physical phenomena occurs
it is customary to say that a physical analogy has been established.

The concept of physical analogy has been employed very often in the teaching of tech-
nical and scientific subjects and in professional practise. Indeed, it is widely accepted
that through its use one can obtain interesting hints regrading the behavior of the two
phenomena so compared. In the past, as an instance, electrical circuits analogous to
some structures of interest for applications in civil engineering have been found. Such
circuits are to be considered as analog computers, instrumental for the design of the
cited structures. Moreover, in the study of Saint-Venant beams it has been noticed
that, using a startling physical analogy with deformation phenomena of a pressurized
membrane with the same section, one can obtain interesting information about their tor-
sional deformation. Nevertheless, the physical analogy between two phenomena is often
supported only by relying on strong experimental evidence. In fact physical analogies
are almost always obtained by means of the mediation of two mathematical modeling
processes (here the reader is referred to the beautiful discussion developed by Feynman
et al. [13] Vol.II, Chapter 12): i) two physical phenomena are modeled by means of
suitable mathematical entities and differential equations; ii) a bijective correspondence
between such entities and equations is established; iii) one proves that, if solutions
to equations describing the first phenomenon are known, then those relative to the
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second are known (and vice versa); iv) finally, one links together those features of the
two phenomena which are deemed most important in the previously introduced math-
ematical models. Oftentimes unfortunately, the treatment of this complex procedure is
simplified, without giving due considerations to the steps from i) to iii) and, simply,
citing the result obtained in iv).

The construction of morphisms between mathematical objects and real phenomena is
the ultimate scope of the activity of scientists. Many experts in mechanics of structures
will agree that the subject of the Bernoulli–Navier beam theory (a formalization of
ideas dating back to Euler) and of a good part of strength of materials courses is the
construction and analysis of such morphisms.

Example 4.3 Let us now consider: a) the set � of piecewise C1 curves in three-
dimensional Euclidean space and the set of distributions (in the sense of Schwartz)
of forces and moments defined on a generic curve γ ∈ �; b) the set of shapes of a
deformable body B and the set of possible mechanical interactions of such a body with
the external world; let us further assume B to be slender, namely that, as a consequence
of the cited interactions, its shape is maintained such that one of its dimensions is
much larger than the other two. We then consider: i) the operation that, through the
solution of the differential equation of the elastica, associates to the curve γ0, and
to a given distribution of forces and moments, the curve γ; ii) the operation which
associates to an interaction and to the undeformed shape of the body its final shape; iii)
the functions which associate to a curve γ the shape of the body obtained translating
a plane figure (called cross-section) along γ itself, and to a distribution of forces and
moments the corresponding mechanical interaction. We notice that, in the example
herein considered, the sets X1 and X3, Y1 and Y3 and the functions f1 and f3 coincide.
Experimental evidence shows that, in a wide range of situations, the triplet of the above
defined functions, with respect to the operations, is a morphism.

4.3 Mathematical Models of Physical Phenomena

Referring to Example 4.3, and according to the nomenclature employed by Aris [7],
we can state that entities described at point b) are the prototype of the set of entities
described at point a) which, in turn, due to the existence of the introduced morphism,
are a mathematical model of those described at point b).

Given a class of entities and physical phenomena, a mathematical model for them is
obtained by:

1. Choosing, a priori, a set of mathematical entities and a set of identification laws
between the chosen mathematical entities, and the physical objects and phenom-
ena which need to be investigated;

2. Determining the circumstances in which the above identification laws are actu-
ally a morphism, making use both of logical inference (to investigate relations
between the introduced mathematical entities) and of the experimental method
(to investigate relations between the considered physical entities).
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The structure of the scientific theories which is implicit in the above proposed order,
which presupposes the formulation of the mathematical concepts for the comparison of
the abstract concepts with experimental evidence, has been long debated in the process
leading to the rediscovery of the ancient Archimedean philosophy of science after the
Renaissance. Inductivism, on the other hand, rejects the structure which is implicit in
the said order, and actually reverses the order. Therefore, we discuss below the different
points of view before formulating precisely the vision which appears to us the most
appropriate.

4.3.1 An Inductivist Vision of the Concept of Mathematical Model

From the viewpoint of model formulation, one can have either an inductivist or a deduc-
tivist vision of the scientific method depending upon the choice of the domain of the
functions fis, appearing in the definition of morphism given in the previous section. Let
us consider the following diagram representing a morphism:

Set of physical physical operations physical

objects −→ results

model ↓ ↓ model (4.4)

Set of mathematical mathematical operations mathematical

objects −→ results

The above morphism reflects an inductivist (and to our understanding also the Platonic
and Newtonian) vision which is founded upon the hope of finding, possibly after a series
of trials and errors, the model: namely, the morphism between the physical world and the
set of mathematical objects employed in its description. The hope consists in believing
that the whole reality can be represented in the mathematical universe and, hence, at
least in principle, is completely foreseeable. This underlies the belief that the two worlds
have substantially the same shape (Galilei states that the great book of nature is written
with the characters of mathematics and geometry). In this vision, the progress of science
consists simply in adding more and more details (namely, mathematical objects) in our
description of the world. The universal validity of the model can be experimentally
corroborated in an indisputable manner verifying the closure of the diagram, namely
the perfect correspondence between mathematical and physical results.

In defense of the inductivist vision it is customary to recall (in our opinion, inap-
propriately) the accomplishments of Newtonian mechanics. As an instance, using the
Newtonian model of the solar system, Gauss computed the effect of the presence of a
planet on the orbit around the Sun of another moving inside its orbit. By analyzing the
orbit of Uranus, Le Verrier, in 1846, confirmed the existence of Neptune. The trajectory
of the presented argument was rather easily disproved by Bertrand Russell by means of
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his anecdote about the inductivist turkey8 (for further details see p. 24 of Chalmers [14]).
The morphism scheme presented in 4.4 has also received criticism, in modern times, for
instance by Duhem and Quine. The reader is referred to the entry Underdetermination
of Scientific Theory in the Stanford Encyclopedia of Philosophy (see [15]).

It appears quite convincing that no definitely “true” scientific knowledge can be
attained by the human mind. These thoughts were already manifest in the mind of
Hellenistic scientists. As theologists in the Middle Ages could not accept such a line
of thinking, the need for a revealed truth became unavoidable. In that moment of human
history the split between scientific knowledge and theology occurred. Science, since
Archimedes, has limited its interests to the formulation of models which conjecturally
and tentatively explain only a specific set of phenomena. In this regard, we have found
the essay [16] particularly illuminating.

4.3.2 A Deductivist and Falsificationist Vision of the Concept of Mathematical Model

The Newtonian (but also Platonistic) natural philosophy is considered too ambitious
to be viable. More modestly, following the vision of Popper and Kuhn,9 we have to
reconcile ourselves to accepting that a scientific model is well-formulated when the
following diagram is commutative, in place of (4.4):

Set of mathematical mathematical operations mathematical

objects −→ results

model ↓ ↓ model (4.5)

Set of physical physical operations physical

objects −→ results

In the deductivist and falsificationist vision one recognizes that theory precedes and
guides observation. In this case, one ceases to consider theories as being formulated
(even only probably) as true by virtue of experimental evidence and systematic obser-
vation. Instead, we must consider theories as purely speculative and only tentatively
formulated conjectures. The most fundamental hypotheses of a theory (which we may

8 In an American farmstead, a turkey decides to shape his vision of the world in a scientifically well founded
manner. Unfortunately, the turkey was an inductivist. He found that, on his first morning at the turkey
farm, he was fed at 9 a.m. Being a good and serious inductivist turkey, he did not jump to conclusions too
quickly. He waited until he collected a large number of observations that he was fed at 9 a.m., and made
these observations under a wide range of circumstances: on Wednesdays, on Thursdays, on cold days, on
warm days, etc. Each day he added another observation statement to his list. Finally, he was satisfied that
he had collected a number of observation statements to inductively infer that I am always fed at 9 a.m.
However, on the morning of Thanksgiving Day, he was not fed but, instead, had his throat cut. Retrieved at
https://mashimo.wordpress.com/2013/03/12/bertrand-russells-inductivist-turkey/ on April 16, 2018.

9 We believe that already Archimedes shared such a vision: nevertheless, we will not insist on trying to
defend this point of view, as in the present context such a priority attribution to Hellenistic science is not
relevant.

https://mashimo.wordpress.com/2013/03/12/bertrand-russells-inductivist-turkey/
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call postulates) are created in the attempt to describe the appearances10 of some aspects
of reality or improved in order to solve the inconsistencies which have already occurred
in the previously formulated theories.

Only after the formalization of the basic conjectural postulates and the logical deduc-
tion of a sufficiently large set of consequences from them, these basic conjectures can,
and must, be compared with experimental evidence: in this way, the most effective
theories are selected, while those being disproved are dismissed. Even if we abandon
the claim that a theory can be true, we can still state that, in a given moment, it is the
best available and more suitable than the previous ones. The steps to be followed then
for formulating models may be enumerated as (the order is temporal):

1) to develop theories (in Greek theory means vision, observation),11 namely to cre-
ate systems of postulates and deduce from them a number of consistent theorems;

2) to establish correspondences between the objects of a given theory and some parts
of reality (note once more that the functions fis in the definition of morphism are
injective but not surjective! In other words there are real objects which do not
correspond to any mathematical entities12);

3) to check that all predictions given by the theory in its domain of application
are not experimentally disproved (this is equivalent to saying that the functions
fis are a morphism, when restricted to some subset of phenomena and physical
situations).

The reader will note that we are not stating that a theory is experimentally proven: we
simply say that it is not disproved (or, following the nomenclature introduced by Popper,
not falsified). We believe (see again Russo [1]) that Hellenistic science managed to
supply to humankind a very powerful tool: the scientifically formulated mathematical
models of reality, based on not-yet-falsified postulates.13

10 The concept σ�ῴζειν τὰ φαινόμενα, which in Romanized Greek reads as Sozein ta phainomena and in
English reads as save the appearances was already known by ancient Hellenistic scientists: for a more
modern treatment of this concept, as inspired by ancient Hellenistic scientists, see e.g. [17].

11 A thorough etymological study of the word “theory” would lead the reader to discover that it has the same
root as the word theatre. We suggest that, in the opinion of the Greek and Hellenistic inventors of the
word theory, a scientist formulating a theory is a spectator of the theater of phenomena; he/she observes
their sequence and synthesizes them with mathematical methods.

12 This situation is rather puzzling for many students and also for many scholars: for instance, in the theory
of Euler–Bernoulli beams there is no mathematical object modeling the state of the whole set of material
particles constituting the section of a beam. The orientation and the deformation of such sections are
accounted for in an indirect way by the theory. It could be difficult to understand in what sense the
Euler–Bernoulli model is “true.” Actually, under certain circumstances, it is the curvature of the line
representing the shape of the beam which is accounting for those phenomena occurring in the said
sections, and which are those predominantly causing the material to store some deformation energy.

13 Actually the Aristotelian school, i.e. the authors of Posterior Analytics I.3 72b1–15, made the first step in
this mental construction. They introduced a rigorous mathematical language and thinking, allowing
western civilization to go beyond the Platonistic idealistic vision of mathematics. The formulation of
precise mathematical theories based on the distinction between primitive notions and defined notions was
possible since then, as in Posterior Analytics the “notions” are concepts invented by the human mind, and
which are organized in well-formulated sentences, respecting the rules of syntax and having a precise
meaning given by their semantics. Following Aristotelians, roughly speaking, defined notions have a
meaning which can be reduced, via a definition, to the meaning of primitive notions, while primitive
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Note that, often, it is not even possible to falsify a postulate or one of its conse-
quences directly. There are many primitive and defined concepts whose correspondence
with physical objects is difficult, if not impossible, to define. Following D’Alembert,
an example of an abstract concept which cannot correspond to a physical entity is
the concept of “force.” Indeed, in D’Alembert’s Traité de Dynamique one finds the
following, rather meaningful, statements:

I have proscribed completely the forces relative to the bodies in motion, entities obscure and
metaphysical, which are capable only to throw darkness on a Science which is clear by itself.

I must warn [the reader] that in order to avoid circumlocutions, I have used often the obscure
term ‘force’, & some other terms which are used commonly when treating the motion of bodies;
but I never wanted to attach to this term any other idea different from those which are resulting
from the Principles which I have established both in the Preface and in the first part of this
treatise.

Indeed, forces have never been measured directly. Forces are usually measured indi-
rectly via some measurements concerning other quantities, e.g. elongations, changes of
angles, etc. The relationship between measured quantities and the abstract concept of
force depends on the theory considered. Falsification of a prediction in the framework
of a theory may be caused by many independent wrong conjectures. For instance: the
observed deviation in the motion of a planet may be caused by the existence of a not yet
observed planet, by a wrong assumption about the dependence of gravitational potential
energy on the distance between interacting masses or by a wrong assumption about the
invariance of laws of physics on the change of observer.

The reader is thus invited to ponder carefully statements like: the principle of inertia
is true because of experimental evidence. Let us agree that such a principle (or postulate)
states: there exists at least one observer (called inertial observer) for which all free
bodies (i.e. bodies which are not interacting with anything else in the universe) move
with a constant velocity. Now, even if we admit that we are lucky and that we have found
such an observer (even though we cannot understand how this has been possible), how

notions are concepts whose meaning is made precise by the axioms they must verify, by an arbitrary
choice (the word axiom derives from a Greek word meaning exactly choice!). One assumes that axioms
are true for primitive concepts: the only possible problem arising in such an axiomatic process could
consist in a choice of axioms which is not consistent, i.e. contradictory.

Using the words of a modern mathematician (who could be suspected, however, of being Platonistic
when he states that the primitive concepts “seem to us as immediately understandable”), one can say that
(see Tarski and Tarski, Introduction to Logic and the Methodology of the Deductive Sciences, page 118,
Oxford University Press, 1946 [18]):

When we set out to construct a given discipline, we distinguish, first of all, a certain small group of
expressions of this discipline that seem to us to be immediately understandable; the expressions in this
group we call PRIMITIVE TERMS or UNDEFINED TERMS, and we employ them without explaining
their meanings. At the same time we adopt the principle: not to employ any of the other expressions of the
discipline under consideration, unless its meaning has first been determined with the help of primitive
terms and of such expressions of the discipline whose meanings have been explained previously. The
sentence which determines the meaning of a term in this way is called a DEFINITION . . .

Axioms are chosen to be true in order to give a meaning to the primitive concepts. Postulates are
statements whose truth is a conjecture aimed to describe physical phenomena. Axioms are true by
definition, Postulates could be true or false. One assumes as a starting point of a scientific theory that a
postulate is true, even if, in principle, it might be false. Postulates must be falsifiable.
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can we check that all the free bodies (which are many and, maybe, even infinite) are
observed to move with constant velocity, in every time instant? Clearly, it is possible to
falsify the statement: the observer O is inertial. Indeed, if one finds a free body which
is not moving with constant velocity in a certain time interval then O is not inertial.
However, there are infinite observers and one cannot check what happens to infinite free
bodies as observed by infinite observers.

In conclusion:

1. To state that a postulate is based on experimental evidence is naive (one could
potentially talk about naive inductivism, in this context).

2. A fundamental characteristic of models must be the (potential) falsifiability of its
postulates and of all the logical consequences of its postulates. In the context
of a given model, it is essential to be able to predict whether a phenomenon
will happen or not, so that experimental evidence can either confirm or disprove
(falsify) the proposed model.

3. It is very difficult to falsify some statements, and in particular those concerning
abstract concepts which do not correspond to any physical entity via the functions
which are conjectured to establish the morphism under discussion.

This conception of the scientific method, even if seemingly restrictive, is likely to yield a
unitary and comprehensible framework to the methods of investigation in science. Cer-
tainly, it accounts for the bulk of scientific activity of scholars since Hellenistic times to
the present. It is interesting to notice that, in formulating his famous abjuration, Galileo
embraced an epistemological doctrine very similar to the falsificationist one, and that,
successively, in the prison of Arcetri, he had permission to study only the new science
of the deformation of Bodies. Those who still want to maintain their inductivist position
should also ponder that Newtonian mechanics cannot be considered proved by Le Ver-
rier experiences. Indeed, more recently, it has been possible to describe experimental
evidence regarding the motion of Mercury only by employing relativistic mechanics.

4.4 Relation between Mathematics, Science, and Technology

The theses outlined in this section are substantially borrowed from the essay of Russo
[1], to which the reader is referred for a more in-depth study, this being in our opinion
an enlightening monograph.

Paradoxically, the deductionist hypothetico-deductive conception presented in the
previous section is probably older than the inductivist one, dating back, at least, to
the scientific and technological Hellenistic School of the third century BC. It seems
permissible to infer this when reading, in addition to the other works of the same school
that have reached us from the annals of time, The Method of Mechanical Theorems, also
referred to as The Method, of Archimedes of Syracuse.14 The following extract is taken
from [19]:

14 The only copy of The Method has come to us in a very fortuitous way: the work was originally thought to
be lost, but in 1906 was rediscovered by Heiberg, in carefully looking at the not-completely-scratched
Archimedean text which had been used to constitute a palimpsest of prayers of the Orthodox Church,
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Archimedes to Eratosthenes greeting . . . Seeing moreover in you, as I say, an earnest student, a
man of considerable eminence in philosophy, and an admirer [of mathematical inquiry], I
thought fit to write out for you and explain in detail in the same book the peculiarity of a certain
method, by which it will be possible for you to get a start to enable you to investigate some of the
problems in mathematics by means of mechanics. This procedure is, I am persuaded, no less
useful even for the proof of the theorems themselves; for certain things first became clear to me
by a mechanical method, although they had to be demonstrated by geometry afterwards because
their investigation by the said method did not furnish an actual [mathematical] demonstration.
But it is of course easier, when we have previously acquired, by the method, some knowledge of
the questions, to supply the proof than it is to find it without any previous knowledge. [. . . the
computation of the area subtended by an arc of parabola, using results on the equilibrium of
forces obtained by Archimedes in the work On the Equilibrium of Planes, follows the previous
statements . . . ]. Now the fact here stated is not actually demonstrated by the argument used; but
that argument has given a sort of indication that the conclusion is true. Seeing then that the
theorem is not demonstrated, but at the same time suspecting that the conclusion is true, we shall
have recourse to the geometrical demonstration which I myself discovered and have already
published.

As Gustavo Colonnetti does, we recognize Archimedes as a father of mathematical-
physics15 and, for this reason, as does Boyer [11], we support the thesis that Archimedes
could well have given a theoretical course in naval architecture (or statics or mechanics
of structures or hydraulics or hydraulic constructions), although probably he would have
preferred, a course in pure mathematics. He was not a purely theoretical scientist (by the
way, one could even argue about their existence): when needed, he was able to exploit
his ability in mechanics. The most suitable role in the modern university system for
a scientist and technologist, as Archimedes was, is explained by Heron of Alexandria
in his works where he describes as a whole body of knowledge, the theories and their
practical applications.

All Archimedean texts (the reader is referred, e.g., to the books On the Equilibrium of
Planes or Hydrostatics) begin with a listing of the objects and theorems constituting the
first line of the scheme set out in (4.5) above and, only afterwards do they address the
issue of establishing the morphism relations fis necessary to give a physical meaning to
the model. We can hence conclude that Archimedes: 1) could very well distinguish the
physical object from its mathematical model; 2) was aware that a mathematical proof
of a certain property in the context of the model is totally independent of the fact that
the same property seems to hold in a particular physical instance; and 3) was accepting
the hypothetico-deductive method. To understand the extent to which Archimedes (and
all the Hellenistic school) was keeping this method in consideration for the study of
technical issues, we again refer the reader to Heron.

We believe that, in the succeeding literature, the accent on the priority of mathe-
matical formulation, with respect to the other steps of the development of the model,
has been misunderstood. To state that formulation of the mathematical model is the
first step in scientific investigations does not mean that one is a Platonistic scientist

written in the thirteenth century AD. Palimpsests were created by scraping the ink from existing works
and reusing their parchment. It was a common practice in the Middle Ages, as vellum was expensive.

15 Even if not unanimously accepted, by the term mathematical-physics we mean that part of science dealing
with the formulation of logical and deductive falsifiable models for the description of physical
phenomena.
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and it does not mean that one despises applications. Because of this misunderstanding
due to empiricists, along the lines of Sestus Empiricus, the belief that Archimedes
and all the Hellenistic scientists despised applications spreads. On the contrary, it is
clear that Hellenistic science places empiricism in the right place. The correspondence
with experience is only a way (perhaps the only way) for selecting valid conjectures
and rejecting bad ones. Hellenistic science was probably the first to state that the
falsificationist-deductionist approach described above is the only one producing reliable
predictions in applications. We believe Lucio Russo to be right when claiming that
the following assertions, some of which are now accepted by a good part of modern
scientists and that we support in toto, could have been stated by Archimedes in one of his
lectures:

1. The great utility of exact science consists in providing models of the real world,
guaranteeing that “true” statements can be distinguished from “false” ones.

2. Science can guarantee the truth of its statements, only when they are restricted to
a precise range of applicability of the models.

3. Such models make it possible to describe and predict natural phenomena and can
auto-extend themselves with the deduction method, hence becoming models in
technological fields. Their predictivity is employed to design new technological
devices.

4. Scientific technology, that makes use of design in the context of scientific theories,
seems intrinsically related to the methodological structure of the exact science and
can only arise from this last.

5. No society is known to have developed a technology able to produce truly new
devices without being supported by a set of scientific theories. Quite likely, the
Hellenistic world (third to second century BC) was among the earliest cultures
able to develop a scientific technology. Technological knowledge, without its
scientific bases, was conserved, at most, up to the Roman era. Besides, it was
only with the advent of the second-Renaissance-scientific-revolution that new
scientific theories, and hence new technological advancements were developed.

It is easy to frame statements 3 and 4 in the specific context of the study and
developments of metamaterials. This is the objective of the last sections of the present
chapter.

4.5 A Digression on Mathematics and Mechanics

The meanings of words in a given language often shift with time. When knowledge
is transmitted from one language to another, then the process of “shift in meaning”
becomes even more frequent and keenly experienced. This process has also affected
the two words playing the most relevant role in the subject of the present monograph:
mathematics and mechanics. We begin by recalling some important changes that have
occurred in the standard choice of the language to be used in scientific communication,
and we then progress to suggesting explanations for some shifts in meaning.
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4.5.1 Recurring Changes of the Lingua Franca in Science and Their Effects

We are persuaded that, although its fundamental causes are yet to be understood, a well-
described phenomenon of degeneration of scientific knowledge occurs in a recursive
way within every, corpus of knowledge, even after it has become well established.
This phenomenon most likely determined the decadence of Hellenistic civilization and
science, at the end of the long process that commenced with the fall of Carthaginian
civilization due to the development of the military power of Rome. We claim that (see
[20], and [21]) such a phenomenon can be observed also in some more recent, and even
contemporary, scientific milieux, having very similar forms as those described in [1].

One of the main concurrent causes of the erasure of important segments of scientific
knowledge, and of the consequent shift of the meaning of scientific words, during their
transmission from one generation of scientists to the following one, can be related
to the change of the universal communication language used (and understood by) all
active scientists all over the world. It is possible to state that if, for one reason or
another, the lingua franca of science is changed, then one can observe nearly systematic
relevant losses of great parts of previously well-established knowledge. In [1] one finds
a description of the process which caused the decline of Greek as universal scientific
language, and of some of the events that occurred when Arabic, Persian, and Latin,
among others, tried to replace it.

Undoubtedly, Greek was the first dominant language used to pioneer scientific knowl-
edge in the western world (west of Persia). This can be supported by many arguments,
but one of them seems to us the most convincing, namely that: in every modern lan-
guage, the great majority of scientific terms have, without any doubt, a Greek root and
origin. Scientific advances in the Indian subcontinent, such as the Vaiśes. ika Sūtra (dating
prior to the eastward Hellenic spread), in Sanskrit and other pre-classical languages of
the subcontinent, though substantial and influential (e.g. the contribution to mathematics
including that of numerals and place value of zero that came to the medieval western
world through Arabic), never achieved universal acclaim. Further developments thereof
appear to be either place bound or non-technological (information regarding Indian sci-
ence remains sketchy and largely undiscovered with wide variations and contradictions
in the literature regarding definitive dates and contributions). Eventually, Greek science
came to dominate the technological developments and become the basis for further
scientific advances.

With the rise of the Roman Empire, Latin became the new lingua franca, in Western
Civilization. When it was abandoned, a long struggle involving many national languages
started, among which we list French and Russian, until English managed to be accepted
universally in this role. In the period between the Renaissance and the beginning of
the French Revolution, Latin was spoken and understood by every scholar. After the
Revolution, a well-educated scientist had to master many languages, including at least
German, French, and sometimes even Italian,16 depending upon their particular fields
of interests. For instance, German competed with English, at least in philology and
chemistry, for a very long time.

16 The masterpieces of Galileo Galilei are not, even now, completely translated into English.
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Until the collapse of the Soviet Union, there was an attempt to impose Russian in parts
of the globe under Soviet influence. Many scholars educated in Russian schools, those
established by the Communist International (Comintern, known also as the Third Inter-
national in many countries) can, even nowadays, read the beautiful textbooks published
by MIR publishers directly in Russian. Many of these books were translated into many
languages, to make Soviet science universally available. But even the Soviet efforts to
perpetuate the babel of languages, or at least a duopoly in the market of languages,
eventually failed.

When English became dominant, many important theories expressed in lost languages
were either misunderstood or simply rediscovered: in other words, these theories were
published in English by English speaking authors as if such theories were novel. Often
(see [20, 22]), the “novel” English theories were even less general and complete than
the original ones.

This process of complete or partial rediscovery, with misattribution of originality, is
one of the reasons why we must conclude that science and technological capacity
(and, in general, human knowledge) cannot be regarded as being systematically
accumulated and stored in an orderly manner, so as to produce an increasing capacity
and understanding.

Science is not advancing by simple additions, improvements and progress. One can-
not state categorically that more-modern textbooks, theories and civilizations are neces-
sarily more advanced than those which preceded them. Indeed it is clear that:

i) science may move some steps forward and some steps backward (see [1]);
ii) it can happen that some époques with higher scientific culture may be followed

by more decadent or regressive ones;
iii) some ideas may be lost in translation because of the intrinsic difficulties of some

theoretical concepts; a very meaningful example is given, in this context, by
the elaboration, formulated in English by Noll, of the classical field theories
described, in German, in an exceptional article by Hellinger (see [20, 22]): as Noll
did not appreciate variational principles, which were at the basis of Hellinger’s
presentation, he tried to reformulate classical theories on a different postulation
scheme, which, most likely (see [21]), is not as general and effective as the
original variational scheme preferred by Hellinger;17

iv) in one époque (for example during the Roman Empire) it may happen that, at the
same time, theoretical scientific knowledge declines while technology flourishes,
as the technological knowledge previously acquired in a more mature scientific
époque may cause a delayed development of economical capacity and, conse-
quently, a better life-style.

This last circumstance may be greatly misleading, as it blurs the otherwise evident
correlation of cause and effect between science and technology. Some are confused
by these delayed effects, and are led to believe that technology may arise without

17 This is a crucial consideration in the context of the topic dealt with in the present monograph: the
conciseness, power, and effectiveness of variational principles are needed when, as in the case of the
design of metamaterials, novel ideas are to be discovered and developed.
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Figure 4.1 Timeline of some technological discoveries.

the solid foundation given by theoretical sciences. Instead, our belief is that without
scientific knowledge technological development is not possible. Therefore, paramount
in the discussion concerning the best methods to be used in designing metamaterials, is
the problem of determining the true nature of the processes of scientific discovery and
technological development, as well as the logical connections between them.

If one loses the historical knowledge that theoretical Hellenistic science was very
deep, and unequivocally comparable to the science flourishing in Paris during the French
Revolution (see [1]), then one can also believe that Roman technology was simply
born by means of a “practical” process of subsequent tests and trials of technologi-
cal solutions. Such a persuasion may induce the modern technologist to believe that
theoretical knowledge is useless in the advancement of technology. A mere inspection
of the subsequent technological discoveries of homo sapiens proves that via “practise”
or “mimesis” the capacity of producing technological innovation is meagre and slow.

Instead we can say, for instance, with only an apparent oxymoron, that the rise of the
Roman Empire coincided with the beginning of its decadence, because with the fall of
Carthage and of the Hellenistic States, the Hellenistic science was soon forgotten, while
Hellenistic technology could still be used and even, sometimes, improved. Indeed, pre-
serving and transmitting mathematical and scientific knowledge is much more difficult
than transmitting knowhow i.e. a series of recipes or of instructions for building things.
The treatise De architectura (On architecture, published as Ten Books on Architecture)
written by Marcus Vitruvius Pollio is an example (see [1]) of list of rules for constructing
buildings which hides, more or less carefully, how these rules were conceived: i.e. by
using a sophisticated mechanical theory. While Russo uses Vitruvius to discover the
scientific roots of Roman technology, many, more naive scholars, use Vitruvius to prove
the following inconsistent statement. The only way to learn how to build things is by
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building things. Now, the reader could ponder the time-line in Fig. 4.1.: why learning
how to make a simple stone axe required an enormous amount of time, while learning
how to build an aqueduct took less trial and error?

The success of English as lingua franca is obviously connected with the rise of the
British Empire and the predominance of the United States. However, it was favored also
by two specific features:

i) its grammatical and syntactical structure, while being formalized by scholars
influenced by Hellenistic culture via the intermediation of Latin and, later, of
French, was, however, conceived to be simpler than all other spoken languages;

ii) it incorporated a larger number of words, taking them from Latin, Anglo-Saxon,
or Greek roots as well as many other languages.

The establishment of a new lingua franca may cause, naturally, a specific attitude in the
scientists having it as their mother tongue. Indeed, they may decide to ignore everything
which is not written in their own language and to “rediscover” the theories not written
in it, instead of trying to understand and translate the original sources. This tendency
continues to persist as exemplified by the modern rediscovery of peridynamics (see
[23]). Piola’s formulation has been rediscovered (after 150 years) by English-speaking
scientists, who did not manage to read the many copies of Piola’s works stored in the
libraries of United States, since Italian, as a scientific language, is forgotten.

4.5.2 The Necessary Mathematical Abstraction is Another Cause of Knowledge Loss

Linguistic barriers are not the only cause of loss of scientific knowledge. The intrinsic
mathematical difficulties presented by some powerful and sophisticated theories are
challenging barriers. Indeed, the technical knowledge of many parts of mathematics
is needed to understand mechanical theories and, in particular, to conceive advanced
technological solutions. Mathematical physics, as the union of mathematical modeling,
experimental practice and development of novel technological solutions, is the scien-
tific tradition to which we shall refer. It was established by many of its Hellenistic
founders, among whom Archimedes of Syracuse seemed to his contemporaries the most
prominent.18

The process of building the morphism which has been described in the previous sec-
tions presents, undoubtedly, some technical difficulties. This is proven, for instance, by
the fact that some of the most profound among Archimedes’ works are being completely
rediscovered and fully understood only recently (see the edition by Heiberg 1889–1906
of the works by Archimedes). Archimedes was the main character of the scientific and
technological revolution which occurred during Hellenistic times. No ancient author
has disputed his standing, both as a scientist and as an engineer. Notwithstanding this
reputation, many of his books were not reproduced in enough numbers to survive the
Middle Ages. Some of his most important contributions reached us via a sequence of
unbelievably fortuitous circumstances (see again [1]). This suggests that when a body

18 Note that the name Archimedes, as referring to the greatest ancient scientist, exists in at least 150 ancient
and modern languages.
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of knowledge is based on a particularly abstract mathematical technique, it is likely that
its rather complex content can be lost.

It appears that the more a theory is based on abstract mathematics the more difficult its
preservation and transmission can be. The reputation of the author also plays a strange
role. Archimedes has been placed in an Empyrean Heaven of great geniuses who cannot
be understood because of their exceptionality. This sanctification has as a final result
that the ideas of these presumed semi-gods are lost because only rare attempts are made
to understand their exalted works. In [1] it is, in our opinion, proven without doubt
that the concept of “genius out of his times” or “outstanding exceptional mind” who
“cannot be understood by his contemporaries” is false. Archimedes was maybe primus
(first) but for sure he was inter pares (among peers). There was at least a beta (i.e. a
second, in the person of Eratosthenes of Cyrene) after Archimedes and a beloved friend
whom he treated as a peer, i.e. Conon of Samos. The true situation is that every great
advancement of science is a collaborative challenge overcome by a group of scientists,
creating a “cultural paradigm” in the sense of Kuhn. Using the tools developed by this
group, finally, remarkable results are obtained, maybe thanks to the last effort of one
of its most talented representatives. Archimedes was without any doubt an outstanding
genius: however, he was surrounded by peers who understood and appreciated his work.
He had been a pupil belonging to a strong school (most likely he studied in Alexandria),
and he contributed to the formation of successors. In his On the Method he explicitly
states that he writes to show to his successors the proof strategy he had used to get his
results. In several aspects Archimedes has been believed to be a solitary genius who was
predestined not to be understood. However, he was a member of a community where
mathematical knowledge was highly regarded and cultivated.

We cannot understand why Lagrange, the more recent and inventive follower of
Archimedes, is not as highly and universally appreciated by modern mechanicians.
Possibly, the reason for his undervaluation can be found in the works by Truesdell,
where one can find the following, rather surprising, statements:

Granted his more modest scope, estimates of Lagrange’s performance must remain a matter of
taste. In music, in painting, in literature, tastes have changed in the past century. Why should
they not also change in mechanics? The historians delight in repeating Hamilton’s praise of the
Mechanique Analitique as “a kind of scientific poem”, but it is unlikely that many persons today
would find Hamilton’s recommendations in non-scientific poetry congenial.

Lagrange’s best ideas in mechanics derive from his earliest period, when he was studying
Euler’s papers and had not yet fallen under the personal influence of D’Alembert.19

and finally:

While the knowledge he thus acquires does not of itself put applications into his hands, it gives
him the tools to fashion them efficiently, or at least to classify, describe, and teach the
applications already known. By consistently leaving applications to the appliers, Lagrange set
them on common ground with the theorists who sought to pursue the mathematics further: Both
had been trained in the same workshop and spoke the same jargon. Even today this comradeship

19 Therefore, if one must believe Truesdell, Lagrange was like Pinocchio under the influence of the bad boy
D’Alembert!
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of infancy lingers on, provided discrete systems and rigid bodies exhaust the universe of
mechanical discourse, In 1788 the mechanics of deformable bodies, which is inherently not only
subtler, more beautiful, and grander but also far closer to nature than is the rather arid special
case called “analytical mechanics”, had been explored only in terms of isolated examples,
brilliant but untypical. Unfortunately most of these fitted into Lagrange’s Scheme; those that did
not, he passed over in silence.

This last Truesdellism is a flagrant fake. Both Lagrange, and later Gabrio Piola, sys-
tematically developed continuum mechanics (see [21, 23, 24]). Truesdell apparently did
not master the mathematical tools needed for understanding the calculus of variations
and the theory of distributions, which are the most fundamental mathematical theories in
formulating continuum models and which are indispensable for basing physics on varia-
tional postulates. Indeed, in order to base continuum mechanics on precise mathematical
concepts, it is necessary to use the powerful tools developed by Laurent Schwartz in
his theory of distributions. The principle of virtual velocities (or, as known in more
recent times, the principle of virtual work) is probably the most ancient conceptual tool
using which (eventually all) physical theories can be formulated (see also [25]). This
principle is formulated by borrowing the structure of the extremality (or stationarity)
condition for a functional, and to be formulated needs the concepts of Fréchet spaces and
derivatives and the knowledge of their application to the construction of the topological
space of Schwartz distributions. Even if Lagrange seems to have understood the main
ideas of such a sophisticated mathematical theory, it is clear that, only when it was fully
developed, its pivotal role in formulating so-called analytical continuum mechanics (see
e.g. [26]) could be recognized. Those who refuse the Archimedean spirit in formulating
scientific models may refuse the effort needed to master such abstract concepts. As a
consequence, their efforts to simplify the postulation scheme of the available models
may produce a relevant loss of scientific knowledge.

4.5.3 The Shift in the Meaning of the Word “Mathematics”

Let us start by citing an ancient source (i.e. the most ancient among those found by the
authors): Anatolius, Bishop of Laodicea, sometimes known as Anatolius of Alexandria,
flourished around 280 AD, as cited by Heron (Heron, Definitions, ed. Heiberg 160,
8-162, 2). The translation from Greek is due to Ivor Thomas, as published in the Loeb
Classical Library [27]:

Why is mathematics so named? The Peripatetics say that rhetoric and poetry and the whole of
popular music20 can be understood without any course of instruction, but no one can acquire
knowledge of the subjects called by the special name mathematics unless he has first gone
through a course of instruction in them ; and for this reason the study of these subjects was
called mathematics. The Pythagoreans are said to have given the special name mathematics only
to geometry and arithmetics; previously each had been called by its separate name, and there
was no name common to both.

20 Note by Ivor Thomas: i.e. singing or playing as opposed to the mathematical study of musical intervals.
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Ivor Thomas then adds the following comment, whose final part, however, could be
questioned:

The Greek word máthema derives from the verb form matheîn which means in the first “that
which is learnt.” In Plato it is used in the general sense for any subject of study or instruction,
but with a tendency to restrict it to the studies now called mathematics. By the time of Aristotle
this restriction had become established.

Actually, in our opinion, the study presented in [1] proves that in the Hellenistic scien-
tific tradition the word mathematics was used with the meaning of “knowledge which,
to be understood, needs a course of instruction.” It is universally accepted that the
Pythagorean school used the word “mathematician” as equivalent to the expression
“scientist” or “scholar who has been inducted to knowledge.” Indeed, as stated again
by Ivor Thomas:

The esoteric members of the Pythagorean school, who had learnt the Pythagorean theory of
knowledge in its entirety, are said to have been called mathematicians (mathēmatikoi) whereas
the exoteric members, who merely knew the Pythagorean rules of conduct, were called hearers
(akousmatikoi). See Lamblichus, De Vita Pythag. 18. 81, ed. Deubner 46. 24 ff.

Also in an authoritative source21 one finds the following statements which agree with
the point of view presented here:

Little is known about Pythagorean activity during the latter part of the fifth century. The
differentiation of the school into two main sects, later called akousmatikoi (from akousma, viz.,
the esoteric teachings) and mathēmatikoi (from mathēmatikos, “scientific”), may have occurred
at that time. The acousmatics devoted themselves to the observance of rituals and rules and to
the interpretation of the sayings of the master; the “mathematics” were concerned with the
scientific aspects of Pythagoreanism. Philolaus, who was rather a mathematic, probably
published a summary of Pythagorean philosophy and science in the late fifth century.

The reader will remark that, in the Pythagorean school, the organization of studies
was already considering two kinds of disciples. The question now arises: do we consider
all engineering students as akousmatikoi or do we believe that some of them must
be regarded as mathēmatikoi? Those who founded the école Polytechnique in Paris
believed that the élite among the engineers had to be considered as a particular class
of mathēmatikoi. Unfortunately, there is now an inclination to consider engineering
studies as part of exoteric knowledge. And, as a consequence, engineers are considered
as a kind of second-rank intellectuals who merely must know the rules of conduct as
formulated following the complete scientific (mathematical) knowledge. This tendency
will reduce engineers to the rank of hearers (akousmatikoi). We deplore and actively
oppose such a tendency. There are also some epigones of Sextus Empiricus who declare
that mathematics is not existing and that only exoteric knowledge really exists. This
chapter is intended to prove that these epigones are wrong.

We believe that it is really interesting to remark (see the entry manthánō in Chantraine
et al. [28]) that:

21 https://www.britannica.com/science/Pythagoreanism#ref560026

https://www.britannica.com/science/Pythagoreanism#ref560026
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1) the verb form matheîn seems to originate the word “mathematics” in all the Indo-
European languages, but it is only in Greek that the derived forms of this verb
form have taken some meanings close to the verbs “to learn” or “to understand”;

2) the evolution of the use of the verb forms linked to manthánō (also cognate
manthan: Sanskrit) is really thought-provoking: in the most ancient sources this
verb means “to learn by practice, learn by experience, learn how to do”; then
the meaning becomes simply “understand,” subsequently it produces the words
máthos = knowledge, philomathēs = lover of the study or scientist, amathēs =
ignorant, máthēma = that which is taught, mathētikos = scholar, mathēteía =
teaching and, finally, one arrives at the expression tà mathēmata = mathematics
which is believed to have been invented by the mathematician, mechanician and
statesman Archytas of Tarentum (i.e. Taras in Magna Graecia) who lived in the
fourth century BC.

An ancient source is attributed to Archytas, whose arguments, we consider, remain
topical and truly valid even after more than 2400 years.22 Indeed, Ivor Thomas (see page
5 in [27]) translates a citation of Archytas reported by Porphyry in his Commentary on
Ptolemy’s Harmonics, ed. Wallis, Opera Mathematica iii. 236. 40– 237. 1 ; Diels, Vors.
i5. 431. 26–432. 8. This citation says that in the book On Mathematics, right at the
beginning of the argument, Archytas writes the following statements:

The mathematicians seem to me to have arrived at true knowledge, and it is not surprising that
they rightly conceive the nature of each individual thing; for, having reached true knowledge
about the nature of the universe as a whole, they were bound to see in its true light the nature of
the parts as well. Thus they have handed down to us clear knowledge about the speed of the
stars, and their risings and settings, and about geometry, arithmetic, and sphaerics,23 and, not
least, about music; for these studies appear to be sisters.

We believe that, as they must describe and predict several phenomena occurring in
the physical world, engineers must master mathematics, as it is the only tool which
allows humankind to “reach the true knowledge about the nature of the universe.”
Therefore, in their studies and in their education, mathematics must play a fundamental
role. Indeed, in their speculations about the most suitable methods for educating young
minds, our Greek ancestors arrived at the conclusion that mathematics has to be part
of the education of every intellectual, independently of the future specialization which
they may choose later in their studies. This thesis is shared by another giant of the
Greek culture of the fourth century BC, who also can be considered an intellectual of
Magna Graecia, as he spent many years in the most important cultural institutions of
Magna Graecia. We cite here some excerpts from The Republic (Πολιτεία, Politeia; Res
Publica) by Plato. The translation is ours, obtained by consulting and elaborating page
256 of [30].

22 The reader will be astonished to discover that the very ancient words of an eminent intellectual of Magna
Graecia needed to be repeated by some modern epigones. Indeed, he/she will find a pure rephrasing of
what was said by Archytas in the beautiful divulgation essays by Barrow (see e.g. [29]).

23 We prefer to use here the word “sphaerics” instead of “sphaeric,” as in the Greek text there is an
accusative plural. Heath in [Heath, Thomas. A History of Greek Mathematics 2 vols. (1921)] made it clear
that in this context sphaerics has to be understood as “the geometry of the sphere considered solely with
reference to the problem of accounting for the motions of the heavenly bodies.”
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There are things which excite the intelligence, while there are things which do not manage to do
so . . . However, the logistikē and the arithmetics deal with numbers . . . and these things lead to
the truth . . . and they will be, therefore, some disciplines which we desire [to educate the young
minds]. Indeed, to the warriors it is needed to teach these things to allow them to become
suitable to the military activities, while it is needed to teach them to the philosopher as he must
understand the ontology of the reality, becoming able to distinguish the true essence of things
from the contingent circumstances . . . Therefore, it will be convenient to impose the study of this
discipline by establishing a law, and it is necessary to persuade those who will become in future
the highest officers of the State [the Polis] to direct their studies towards the logistikē and to
continue their studies . . . until they will arrive, by using the pure intellect, to the contemplation of
the nature of the numbers, and they should not study it as it is done by the merchants . . . who are
interested only in buying and selling . . . instead, they should study it to induce their mind to
arrive from the contingent appearances to the truth and to the nature of the existence . . . And I
want to talk about the discipline which is cultivated by the mathematicians and to argue that it is
elevated and, in many aspects, useful for that which we want, under the condition that one is
cultivating it to the aim of understanding and not for trafficking . . . Can you see, therefore, that
such a discipline is for us most likely really necessary, as it appears the right tool for obliging
the mind to make use of the pure intelligence to reach the pure truth? Moreover, have you
already noticed that the persons who are by nature skilled for the logical calculations are born
. . . to be capable in all intellectual disciplines and that also those persons whose mind is slower,
when they are seriously educated and are exercising themselves in this discipline, all really do
manage to progress to become more clever than they were before their education?

In our opinion the Greek word logistikē must be translated with the expression “math-
ematical logics” or simply with “mathematics.”

4.5.4 The Shift in the Meaning of the Word “Mechanics”

We use in this subsection the corresponding entries from the Liddel-Scott Lexicon or the
Chantraine Dictionnaire, which both represent invaluable sources of linguistic knowl-
edge. We start from the Greek verb Mechanàomai, which has to be translated as “to
realize by means of ingenuity.” Then we have found, among many others, the entries:

• Mechanè which is any means or artificial tool or instrument which is used for
doing something. In particular: an elevator, a crane, a system for mounting a
bridge made of floating elements, pumps or any system for irrigating, hydraulic
presses, war machines such as siege towers and ramrods, tools for theater repre-
sentations, or any tool for personal or city protection;

• Mechan‘arios = Engineer;

• Ta mechanicà = science of machines;

• Mechanikòs = that which uses or the person which uses ingenuity for solving
problems;

• Mechanourghìa = the techniques for machine construction;

• Mechànoma = self-propelling crane.

A certain Anglo Saxon historiography (mainly, but not exclusively) managed to prop-
agate the fable about a Greek culture inclined towards the theory, carefully avoiding
practical applications. This historiography then claims that it was the Roman culture
(as distinguished from the Greek culture) which, instead, cultivated the technological
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practice. Such fables lead to the following questions immediately. Can the inventors
of this legend explain why Greek culture, supposedly refraining from the practical
applications of the theories which it formulated, invented such a wealth of technical
words? Why did such a culture invent the Antikythera mechanism and so many other
technological devices?

Probably, this legend was born because of a superficial understanding of the comedy
The Clouds by Aristophanes. In it, by using an exuberant language and a witty sati-
rization, this author describes the behavior of a leading contemporary figure: the natural
philosopher or the mathematician. Such a figure is described as a permanently distracted
person, completely dedicated to the development of his theories and completely inca-
pable of organizing the minute details of their everyday life. In our hyper-technological
lives, the stereotype corresponding to the mathematician is, very often, similar to the
one described by Aristophanes. However, one should consider that, if Aristophanes
needed to satirize mathematicians, it is likely due to the social importance which these
intellectuals had managed to acquire in his society. In reality, practical capacity is always
associated with theoretical knowledge. The theoretical vision of human knowledge,
invented during (and peculiar to) the Hellenistic époque, allowed for the inventions of
ta mechanica. This science, then, gave momentum to the tèchne, and allowed for the
wonderful and surprising economical development of Hellenistic States. These states,
once they were integrated into the Roman Empire, became its industrial driving force.

The Heron’s Mechanics School24 is described in the Mechanics by Pappus (see Papp.
Coll. vui., Praef. 1-3, ed. Hultsch 1022. 3-1028. 3 as translated by Ivor Thomas) in a way
which shows the modern relevance of the Hellenistic conception of applied sciences:

The science of mechanics, my dear Hermodorus, has many important uses in practical life, and
is held by philosophers to be worthy of the highest esteem, and is zealously studied by
mathematicians, because it takes almost first place in dealing with the nature of the material
elements of the universe. For it deals generally with the stability and movement of bodies [about
their centres of gravity], and their motions in space, inquiring not only into the causes of those
that move in virtue of their nature, but forcibly transferring [others] from their own places in a
motion contrary to their nature; and it contrives to do this by using theorems appropriate to the
subject matter. The mechanicians of Heron’s school say that mechanics can be divided into a
theoretical and a manual part; the theoretical part is composed of geometry, arithmetic,
astronomy and physics, the manual of work in metals, architecture, carpentering and painting
and anything involving skill with the hands. The man who had been trained from his youth in the
aforesaid sciences as well as practised in the aforesaid arts, and in addition has a versatile mind,
would be, they say, the best architect and inventor of mechanical devices. But as it is impossible
for the same person to familiarize himself with such mathematical studies and at the same time
to learn the above-mentioned arts, they instruct a person wishing to undertake practical tasks in
mechanics to use the resources given to him by actual experience in his special art. Of all the
[mechanical] arts the most necessary for the purposes of practical life are: (1) that of the makers
of mechanical powers they themselves being called mechanicians by the ancients –for they lift
great weights by mechanical means to a height contrary to nature, moving them by a lesser force
(2) that of the makers of engines of war, they also being called mechanicians– for they hurl to a
great distance weapons made of stone and iron and such-like objects, by means of the
instruments, known as catapults, constructed by them; (3) in addition, that of the men who are

24 It is a late Hellenistic textbook listing, without many theoretical details, some technological solutions of
use in engineering sciences.
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properly called makers of engines –for by means of instruments for drawing water which they
construct water is more easily raised from a great depth; (4) the ancients also describe as
mechanicians the wonder-workers, of whom some work by means of pneumatics, as Heron in his
Pneumatica, some by using strings and ropes, thinking to imitate the movements of living things,
as Heron in his Automata and Balancings, some by means of floating bodies, as Archimedes in
his book On Floating Bodies, or by using water to tell the time, as Heron in his Hydria, which
appears to have affinities with the science of sun-dials; (5) they also describe as mechanicians
the makers of spheres, who know how to make models of the heavens, using the uniform circular
motion of water. Archimedes of Syracuse is acknowledged by some to have understood the cause
and reason of all these arts; for he alone applied his versatile mind and inventive genius to all
the purposes of ordinary life, as Geminus the mathematician says in his book On the
Classification of Mathematics. Carpus of Antioch says somewhere that Archimedes of Syracuse
wrote only one book on mechanics, that on the construction of spheres, not regarding any other
matters of this sort as worth describing.25 Yet that remarkable man is universally honoured and
held in esteem, so that his praises are still loudly sung by all men, but he himself on purpose took
care to write as briefly as seemed possible on the most advanced parts of geometry and subjects
connected with arithmetic; and he obviously had so much affection for these sciences that he
allowed nothing extraneous to mingle with them. Carpus himself and certain others also applied
geometry to some arts, and with reason; for geometry is in no way injured, but is capable of
giving content to many arts by being associated with them, and, so far from being injured, it is
obviously, while itself advancing those arts, appropriately honoured and adorned by them.

We add here the comment added in footnote by Ivor Thomas, which shows how he
would have agreed with the analysis presented in [1]:

With the great figure of Pappus, these selections illustrating the history of Greek mathematics
may appropriately come to an end. Mathematical works continued to be written in Greek almost
to the dawn of the Renaissance, and they serve to illustrate the continuity of Greek influence in
the intellectual life of Europe. But, after Pappus, these works mainly take the form of comment
on the classical treatises. Some, such as those of Proclus, Theon of Alexandria, and Eutocius of
Ascalon have often been cited already, and others have been mentioned in the notes.

Leaving it to the reader to make appropriate comments on the words by Pappus, we state
here that:

• The Hellenistic mechanics (in Greek Ta mechanicà is plural) in the mind of
Pappus coincides with the modern engineering sciences.

• Mechanics, as the science of the motion of bodies, is the first physical theory
which was shaped with a logical-deductive Euclidean form, and a rigorous pre-
sentation of mechanical theories is already present in the works of Archimedes.

• Because of the predictive use of mathematics, the mechanical theories have
allowed for the design of many sophisticated devices since the Hellenistic
époque, and have also served as the conceptual basis of a unifying description of
the Universe.

• Hellenistic tradition arrived via Middle Ages comments to the Renaissance
and later scientists, eventually leading to the Laplace Mechanicism. Leonardo
da Vinci, a great admirer of Hellenistic science, writes in his comments that
“Mechanics is the paradise of mathematical sciences.”

25 Note by the authors: also in the post Hellenistic science many scholars decided that only the books which
they had in their hands could have existed!
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Many new theories, technical innovations and machines have been invented since the
Renaissance. To underline the originality with respect to what had been done by the
ancients, and also for respecting the tradition which limited the range of applicability of
the mechanical theories to specific fields, modern scientists have introduced new names
for new parts of scientific knowledge. The name mathematics became dedicated to the
study of logical structure of scientific theories, and the name mechanics was limited
to a specific class of mathematical models. For instance, electromagnetism was born
as a specific application of mechanics to the phenomena concerning light propagation
but, after Maxwell, it became an independent discipline. New branches of engineering
sciences were established: aeronautics, astronautics, informatics, telecommunication
sciences, and so on. What was new, however, was only the object of their study, i.e.
the phenomenology which they aimed at describing. The methods and the fundamental
world-vision underlying their formulation remained Archimedean. The word “machine”
has been limited to those technological apparatuses developed by using the “ancient”
theories and their further developments. For Archimedes, a valve, a transistor, a tele-
phone, or a television, would all be called a “machine,” although the modern scientists
may sometimes disagree with such a usage.

In the shift of meanings which has occurred more recently, a mechanician is a spe-
cialized worker capable of repairing cars or some complex devices whose mechanisms
are “macroscopic,” i.e. characterized by a length scale of some millimeters or tens of
millimeters. However, when serious and highly novel ideas are introduced, the ancient
noble meaning resurfaces: quantum mechanics is the conceptual theoretical basis for
chemistry and electronics, structural mechanics is the theoretical basis of the technolog-
ical solutions used, for instance, in civil and aeronautical engineering, fluid mechanics
is the basis of hydraulics, relativistic mechanics produces a set of cosmological mod-
els, etc. Finally, in automation engineering, in computer science, or in the theory of
computation, one finds concepts such as the Turing Machine or von Neumann Machine.

4.6 Materials or Metamaterials? A Dichotomy?

It is not true that mechanics is a discipline whose capacity to produce theoretical and
technological innovation has been completely exhausted. Many new ideas, methods
and technological applications are being discovered while still adhering to the original
ancient Archimedean spirit.

Among many others, one can precisely locate a very topical frontier in contemporary
research in mechanical sciences. Along this frontier many research groups fight their
cultural battles and all together try to advance knowledge. The contemporary debate
centers on which materials can be considered as “standard” and which as “exotic”
and thus deserving of attention. The frontier, in this case, divides standard from exotic
materials.26 There is a general consensus about the existence of such a frontier. However

26 In the title of this section the English word dichotomy is a so-called loan-translation of the Greek word
διχοτομία (dichotomía), which means “dividing in two,” from δίχα (dícha) “in two, asunder” and τομή
(tomé) “a cutting, incision.”
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there are discordant opinions about where it has to be placed. It is indeed clear that to the
words “standard” and “exotic” one can give several (and rather imprecise) meanings.

We remark explicitly here that a change of conceptual paradigm seems to be needed
when confronting the problem of designing metamaterials. The difficulty seems to con-
sist in understanding the difference between physical objects which already exist and
those which can logically exist, but whose existence is, at the moment, purely potential.
The philosophical implications of this difference are the subject of ancient doctrines,
which are at the basis of the branch of philosophy called ontology.27

4.6.1 Models for Materials and Design of Metamaterials.

The endeavor needed to model the mechanical properties of an already existing mate-
rial requires the capacity to invent the (somehow optimized) mathematical model which
best describes its behavior. In this case the material (and its physical properties) may
already be given, and the scientist must find a mathematical model which is both i)
simple enough to produce solvable and computable28 mathematical problems for pre-
dicting the behavior of the considered material and ii) complex enough to describe all
phenomena of interest.

The interplay between the need to describe the widest possible set of phenomena and
the need to have mathematical problems whose solution is computable is the essence
of the optimization procedure to be solved in this modeling effort. It is essential to
understand that the expression “already existing material” is sometimes replaced by the
expression “a material which already exists ‘in nature.”’ This second one is ambiguous:
does stainless inoxidizable steel already exist in nature? Or is it, rather, the result of
a technological process (and therefore artificial)? To be precise, stainless steel was
invented, on the basis of the theory which we call chemistry (which at that time was
clearly much different from our current understanding), to obtain a material which
resists the oxidation processes. Therefore, it is the product of a theory and it is not “natu-
ral.” i.e. existing independently of the action of humankind. On the other hand, stainless
steel was not designed explicitly to show a precisely defined mechanical behavior and,
therefore, the mechanical modeler must study it ex novo as a material which is existing
and whose behavior is known, as it were a natural material.

On the contrary, the endeavor needed for designing a material whose mechani-
cal properties are those desired for a specific application requires the invention of
microstructures and compositions which, at a given macro-scale, show the demanded
global behavior. The work of the scholar when confronting this second endeavor is
rather different. Indeed, the role of mathematics is even more fundamental. One must
start by specifying the desired mechanical behavior. This specification, because words in
natural language have ambiguous meanings, is possible only by assigning the evolution
equations which must govern the behavior of the material to be designed. Then, one

27 It can be defined as “the philosophical study of the nature of being, becoming, existence, or reality, as
well as the basic categories of being and their relations.” Parmenides is the Greek philosopher who is
universally credited to be the founder of this study.

28 Using the computation tools which are available when the modeling effort is performed.
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must confront the problem of synthesis: that is the problem of designing a microstructure
and composition which, at a well specified length scale, behaves in such a way that the
equations chosen a priori are predictive. Finally, one has to establish the range of validity
of the equations chosen a priori, i.e. the set of phenomenological conditions in which
they are predictive.

Even if the change of paradigm is neither revolutionary nor completely new, as the
challenge described has some precedents in engineering sciences, it requires remarkable
changes in the both the theoretical and experimental methodologies. We simply remark
here that, before the final prevalence of digital computer devices, analog circuits had
to be synthesized to provide analog computers for calculating solutions of differential
equations. The point of view to be used in the design of metamaterials is therefore
the same as the one which was used in the design of analog computers. One of the
most innovative designers of analog electric circuits has been Gabriel Kron (see [31,
32]), whose deep understanding of mathematical physics greatly contributed to many
innovative technological advancements by General Electrics. Some novel multiphysics
multiscale metamaterials have been designed and built directly using the results obtained
by Kron, and the most modern piezoelectric transducers (see, e.g., [33–36]).

The nominalistic issues which we are facing here are perfectly analogous to those
which were faced by Archytas when he decided to introduce the word “mechanics” for
specifying a precise field of study. The reasons why we believe that all the previous
considerations are important in the present context can be understood by examining
the following questions. Is it meaningful and useful to introduce a new name (i.e.
“metamaterial”) for describing what we are studying? In what sense are the intellectual
efforts needed to develop the theory which we present in this book different from
the activity which produced all known innovations in mechanical and engineering sci-
ences? The previous considerations may suggest that a novel name is needed. Indeed,
a rather unusual logical procedure has to be followed in the present context. How-
ever, a truly perceptive reader may anticipate a need to specify at first the meaning
of the word “material” and the difficulties involved in its definition. We believe that
any responsible discussion of these fundamental questions would be remiss without
a thorough discussion of the concept of “material” leaving it open to interpretation
with a vague meaning. These considerations are present in all books of continuum
mechanics, statistical mechanics and theory of materials. Their origin could be traced
up to the ancient atomistic Epicurean theories formulated by Democritus. We leave the
historical considerations to those who may be interested without further imposing upon
the reader who has been patient with our many historical remarks.29 Here we consider
the following questions:

Can a complex mechanical system such as the one depicted in Fig. 4.2 (i.e. what we have called
a pantograph microstructure with perfect pivots) be called a material? And if it can be called so,
and therefore described by the mathematical models used for materials, when is such a
description is appropriate?

29 See https://plato.stanford.edu/entries/democritus/ ; https://plato.stanford.edu/entries/atomism-ancient/
https://plato.stanford.edu/entries/atomism-modern/ and https://plato.stanford.edu/entries/statphys-
statmech/.

https://plato.stanford.edu/entries/democritus/
https://plato.stanford.edu/entries/atomism-ancient/
https://plato.stanford.edu/entries/atomism-modern/
https://plato.stanford.edu/entries/statphys-statmech/
https://plato.stanford.edu/entries/statphys-statmech/
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Figure 4.2 Pantographic fabric with perfect pivots.

The aforementioned system is characterized by at least two length scales. At the
smallest scale it is constituted by matter spatially distributed in a precise and complex
geometrical microstructure. This microstructure includes some gaps which divide
different deformable microscopic parts to form nearly perfect pivots, with rotat-
ing parts. These pivots allow for (possibly!) very large and very localized relative
rotations and displacements. This microstructure can be recognized to be (at least
locally) what may be called, following an ancient nomenclature “a machine” or
mechanisms. At the largest scale the whole system may appear as a “metamaterial”
whose deformation energy may be independent of local displacement gradients and
depend only on some second gradients of displacement. A further related question
arises:

In what sense may “microscopic mechanisms” produce at macro-level a (meta)material?

A critical reader may maintain that, if, in the mechanical system which we are consid-
ering, one can find a material at all, one must find it only at a certain microscopic level.
Such a point of view, in our opinion, is rather limiting.30 The underlying idea supported
by our critical reader would be that there is a preferred specific length-scale, and that
the true nature of a material is evident only at that scale. This point is strictly linked
with the atomistic vision of nature. The characteristic length scale at which a physical
system behaves as a material is, in this vision, large enough to include many atoms but
small enough to show homogeneous physical properties. Characteristic scales of more
complex structures must be, as a consequence, larger than the scale at which we observe
materials.

30 It resembles somehow the Aristotelian assumption about the existence of a center of the Universe placed
in the center of the Earth.
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This vision, in our view, is rather crude and lacks imagination. It is also very close
to the one accepted in the literature when introducing the concept of Cauchy continuum
models for materials (see [20, 22, 23, 37]). Some materials may may be consistent with
the just stated assumptions. However, a large class of materials and, in particular, the
metamaterials which we have in mind are not. This is the reason why the models based
on Cauchy continuum theory simply cannot supply the starting equations for designing
truly exotic metamaterials. The designed metamaterials have to be modeled, at large
scales, with more sophisticated continuum models. For example, a second gradient
continuum can offer a suitable approach for the material system in our discussion given
in Fig. 4.2.

In the case of this example such an assumption would imply that a material can
be considered only at a length scale of a fraction of the dimensions of the depicted
pivot. Note that this material system is obtained via laser sintering of polyamide powder
during a 3D printing process. Therefore, an even more critical reader might argue that,
simply by going down in scale (i.e. “zooming”), one can observe another microstruc-
ture. Such a microstructure would be constituted by the eventual partial fusion of the
grains of polyamide used in the 3D printing process. These grains will be only partially
melted and agglomerate into grain clusters. The process of production of the 3D printed
specimens will, thus, lead to an overall material, which, although compositionally very
similar (with some small variation in density), has mechanical properties which could
be vastly different from those of the bulk form of the initial raw material that now exists
at a lower scale. In different contexts and in different situations, these critical remarks
have often been repeated to try to capture the ultimate nature of mechanical phenomena
(see e.g. [23, 24] and Feynman’s lecture notes in physics).

Therefore, we will abandon any attempt to define a specific length scale at which
something can be called a “material.” Instead, we will accept a “relativistic” point of
view that emphasizes the “dual” nature of material-structure. We will conjecture that,
at a given length scale, a mechanical system either is a material with some structure, or
is a structure of elements constituted by some material. This is the reason why we have
tried to be precise and decided, in the introduction, to specify the concept of locally
“homogeneous material” by using a kind of “sampling window.” By rephrasing the
definition given there:

We say that a microscopically complex mechanical system can be modeled as a homogeneous
material when one can find a length scale L such that, by moving a cubic volume whose sides are
L, (i.e. a Representative Elementary Volume or, shortly, a REV) in the system, the overall (i.e.
macro) mechanical properties of the part of the system included in the REV do not change, so
that these properties can be described precisely enough in terms of overall (macro) kinematical
descriptors, to be assumed as constant for every REV.

Going back to the 3D printed specimen described before we can remark that if
one chooses a REV which includes a sufficiently large amount of grains, “printed
polyamide” can be regarded as a homogeneous material of granular microstructure
according to our previous characterization. Clearly, the printed polyamide is a different
material if compared with the material constituting each polyamide grain used to form
the powder placed in the chamber of 3D printers, before the printing process. Moreover,
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if one were able to fully melt this powder, pour the obtained liquid in a mold, and use
a specific cooling process to get a solid object, the obtained material would be yet a
third one. Printed polyamide is constituted by bigger grains having larger size than the
grains of polyamide powder. These larger grains incorporate smaller grains, partially
melted, and fused together by fully melted polyamide powder. If, instead, one chooses
the REV to have a size smaller than the size of the initial powder grain one may find
a “fundamental polyamide,” which has rather different mechanical properties when
compared to “printed polyamide.”

The characteristics of the pantographic sheet emerge at a larger length scale. In order
to perceive its peculiar mechanical behavior one has to choose a REV including some
pantographic cells (which in this case is composed of the primitive lattice square formed
by the beams connected by pivots). The REV, so chosen, represents another macro
material, although it is constituted, at a lower length scale, by a different material,
i.e. printed polyamide, and, at an even smaller scale, by another one, i.e. “fundamental
polyamide.” One could indefinitely go to lower scales, considering molecules or atoms
and so on to even smaller fundamental components of matter, or to larger scales, by
considering materials constituted by variously interconnected pantographic sheets. We
must, therefore, abandon any further analysis of the concept of material, invoking some
of the fundamental philosophical ideas and investigations which guided the birth of
Hellenistic science. We do not have the possibility to further investigate the ideas of
Heraclitus and Democritus, or to see how Epicurus influenced modern scientists, or what
was his influence on Boltzmann, and to finally analyze the influence of Truesdellism in
the debate about the most fundamental nature of materials (however see for more details
e.g. [20, 22]).

The discrete and continuum approaches offer two possible ways to describe the
behavior of a physical entity. In some cases continuum models are to be preferred
over the discrete ones in order to extract relevant information. In other circumstances
discrete models, like Hencky type models for beams, are more suitable. Moreover,
the first gradient Cauchy continuum model is not capable of describing the behavior of
every material. For some phenomena and some materials generalized continuum models
are needed. Consequently, in order to be able to design more general metamaterials, the
conceptual straightjacket represented by Cauchy limiting assumptions must be removed.
In fact, every conceptual straightjacket must be avoided by open-minded scientists. A
wise mechanician must use the conceptual tools which, in a given moment and for a
given class of problems, are more suitable.

4.6.2 A Tentative General Definition of Metamaterials

We shall now try to add further details to the considerations with which we started in
the Introduction on the subject. In order to “go beyond” the concept of material, we
have attempted, in the preceding section, to specify in as much detail as possible our
understanding in this respect. Even if many weak points can be found in our arguments
we believe that we have made our point clearly enough. On the other hand, it is unques-
tionable that in order to get a generalization of a concept one has to make it clear enough.
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In this regard our hope is that we have managed to avoid those “Girandole di Parole”31

harshly criticized by Galileo.
A definition of “metamaterial” can be obtained by reformulating the entry in

Wikipedia (as read on Dec 6, 2017). Note that there is a tradition, in western science, to
start every subject, may it be one of the exact or one of the human sciences, by some
etymological notes about the origin of the words used in that subject and in particular
about the name used for specifying the subject. We have paid our tribute to this tradition
in Section 5, however, some other etymological notes are necessary.

To make the reading of these pages easier we repeat our definition here.

Metamaterials – a combination of the Greek word μετά, meaning “beyond,” and the late Latin
word “materialis” (from Latin materia = “matter,” from māter = “mother”), an adjective already
used in Middle English in the sense of “relating to matter”– are materials engineered to have a
property that is not found in nature. They are assemblies of multiple elements made up of
materials such as metals or plastics. The constituting materials are usually [our italic] arranged in
repeating patterns, at scales that are smaller than the wavelengths of the phenomena they
influence. Metamaterials derive their properties not from the properties of the base materials, but
from their newly designed structures.

We have repeated this definition because we believe that it manages to capture some
important ideas and meanings. However, in order to critically review this definition we
feel that some additional discussion is warranted.

First of all we do not agree with the use of the adverb “usually” (in italic in the text).
It is a rhetorical artifice for hiding many concepts and situations. Metamaterials can
be constituted by periodically repeated cells, or by microstructures which may vary in
the passage from one cell to the closer ones. One can organize the microstructure of
the mechanical system in several ways, by changing the geometry and the mechani-
cal properties of the considered complex system more or less continuously from one
microstructural cell to the others. One could even imagine some interactions between
distant cells, without any specific periodicity. On the other hand the microstructure must,
indeed, be present at a length scale lower than a chosen one and the microstructural
patterns must be well-specified and very precisely determined.

Second we believe that the sentence “Metamaterials derive their properties not from
the properties of the base materials, but from their newly designed structures.” is mis-
leading. The true concept of metamaterial cannot be limited to the systems in which
the complexity at micro level concerns only the geometry of considered mechanical
systems. There are metamaterials which exploit the use, at micro level, of many mate-
rials, having very high contrast in their mechanical properties. In other words one can
get exotic materials by combining a clever geometry of mass distribution with another,
equally clever, distribution of one of the several physical properties, as for instance,
elastic stiffness.

Finally: the meaning of “. . . not found in nature” is vague and incomprehensible.
Stainless steel, and even iron, cannot be unequivocally classified as natural materials.

31 Girandole became an English word meaning: a rotating and radiating firework. In Italian Girandole is
plural. Galileo says that some scholars use Girandole of words, i.e. marvelous constructions of
meaningless statements, in order to astonish the reader and the audience.
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Thousand of years of scientific and technological development preceded the invention
and advent of such materials, which did NOT exist in nature in this form. Nobody finds
a piece of steel or other similar materials in a mine, simply excavating some rocks.
However we do not want to categorize these as “metamaterials.” Our specific intention
is to avoid calling materials “natural” simply because we have become familiar with
their existence to the extent that it has been forgotten that they resulted from a series of
serious theoretical and experimental efforts that led the scholars of previous generations
to surprising results. We simply state that:

A “metamaterial” is a material which has been designed to meet a specific purpose governed
by a desired specific behavior that is described by a given set of evolution equations.

A metamaterial is found by means of a synthesis process that can be divided into
theoretical and technological parts. The synthesis proceeds by imagining a physical
entity of complex geometrical structures formed of parts made from many fundamental
materials (i.e. materials whose characteristic length scale is smaller than the length scale
at which the metamaterial must be used). The introduced parts in this entity are joined
using some suitable physical links in order to establish specific interactions between
them.

In this context, the “microstructure” of the considered metamaterial is denoted by the
set of shapes, geometric mass distribution, the distribution of physical properties and
the conceived elementary interactions which we have thus established. The considered
interactions may involve different physical phenomena. However, following a well-
established tradition, we will call mechanical metamaterials those metamaterials where
the interactions exploited at the length scale of the microstructure are purely mechanical.
Of course if one considers length scales close to atomic dimension, all interactions are
electromagnetic, or nuclear, or even more fundamental. We consider here as mechanical
those interactions which can be described with classical kinetic and deformation energy
at a given length scale.We explicitly remark here, as an example, that piezoelectrome-
chanical beams, see [33–35], cannot be regarded as mechanical metamaterials according
to our definition as, at the length scale of the designed microstructure, their behavior
is determined by piezoelectric phenomena. Further it should be understood that we
have systematically applied the term “micro” for the length scale where the exploited
microstructure is designed to have all its physical inhomogeneity and where it shows
in-full its complex behavior, and we have used the term “macro” for the length scale at
which the designed system can be regarded as a homogeneous material.

It is remarkable that in the more interesting cases (see [38–41]), in which the macro
metamaterial shows behaviors that are completely different when compared with the
micro behavior of its constituent materials, the microstructure, typically, presents a
marked contrast of mechanical and geometrical properties. In this regard, the “metama-
terials” introduced in Fig. 4.2 are “extreme” in all aspects. These metamaterials consist
of very thin (and soft) structural elements that are interconnected via (much) stiffer
elements, and some other elements that have negligible stiffness (such as the perfect
pivots that behave like hinges, i.e. do not resist the relative rotation of interconnected
beams). Their geometry is also extremely inhomogeneous with empty spaces used to
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partially separate the elastic response of interconnected elements (this is, for instance,
the function of the perfect pivots).

We reassert that, in order to characterize the specific purpose of a new metamaterial
to be invented, mathematics is needed. Indeed, we can state that the only way to invent
a metamaterial implies the choice of their governing evolution equations and the sub-
sequent determination of the microstructure which, at macro level, is described by a
given equation. The problem just formulated is often called the problem of synthesis of
a given set of evolution equations.

4.6.3 Some Basics of Ontology of Metamaterials: What Can Exist?

The problem which we want to discuss in this section has been so widely debated as to
deserve a treatise (of several volumes) by itself. We will discuss here only the aspects
of this debate which concern specifically the design of metamaterials. In particular, we
will limit ourselves to a short discussion of some aspects of thermomechanical theories
in which the ontological question, which we simply evoke here, has historically played
a relevant role.

We consider first the controversy about the elastic constants for deformable bodies in
small deformations. This controversy is based on the question: which kinds of homo-
geneous linear elastic body may exist? Or, once one has formulated a corresponding
mathematical problem: how many independent elastic constants can be determined?

This is a typical ontological problem which Parmenides of Elea would have con-
sidered of major importance. Navier, Cauchy and Poisson32 did formulate a discrete
micro-theory33 starting from the assumption that micro-particles were placed in the
reference configuration in a regularly spaced lattice, and that their interactions occurred
via a central force characterized by a unique elastic micro-constant. After a certain
homogenization procedure they deduced, at macro-level, the constitutive equations of
an isotropic material. Unfortunately, these equations did not manage to describe the
mechanical behavior of all isotropic materials except those having Poisson ratio equal
to 0.25.

It is somehow paradoxical that Poisson believed this elastic constant to attain a
unique and well-defined value,34 but this is not the case. Even more paradoxical is the
circumstance that, recently, a lot of research, which increased the occurrence of the name
“Poisson” in modern publications, has been dedicated to the synthesis of auxetic
metamaterials, i.e. materials having negative Poisson ratio, whose existence was firmly
denied by Poisson. In the theory and practice, auxetic metamaterials are of great
importance. For this reason, we have chosen here to discuss the genesis of the related
theoretical concepts.

32 Our source here is the essay by Edoardo Benvenuto et al. [42].
33 We refrain from describing here how Gabrio Piola (see [24]) underlined the weak points in their

deductions. This will be the subject of future specific essays.
34 A beautiful historical presentation of this subject is given in [43] where, however, both the contributions

by Green and the role of the energetic principles is underestimated, while a definitely exaggerated role is
attributed to “empirical knowledge.”
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When facing indisputable experimental evidence, Cauchy followers needed to try
to adapt the theory to “preserve appearances” (see [17]). A controversy started about
the way the theory could be adjusted. Indeed, many “epicycles” were added, until the
Lagrangian School, using an evident “economy of thought” (see e.g. [44]), managed to
find the solution. Green35 solved the controversy by resorting to Lagrangian ideas and
methods. He described the point of view expounded here in such a brilliant and effective
way, that we prefer to cite him directly (see pp. 245–246 in [45]), as we expect that the
reader will not be distracted by the accidental (and not relevant) reference to the theory
of “luminiferous ether.” Here are the exact words by Green:

M. Cauchy seems to have been the first who saw fully the utility of applying to the
Theory of Light those formulae which represent the motions of a system of molecules
acting on each other by mutually attractive and repulsive forces; sup- posing always
that in the mutual action of any two particles, the particles may be regarded as points
animated by forces directed along the right line which joins them. This last supposition,
if applied to those compound particles, at least, which are separable by mechanical divi-
sion, seems rather restrictive; as many phenomena, those of crystallization for instance,
seem to indicate certain polarities in these particles. If, however, this were not the case,
we are so perfectly ignorant of the mode of action of the elements of the luminiferous
ether on each other, that it would seem a safer method to take some general physical
principle as the basis of our reasoning, rather than assume certain modes of action,
which, after all, may be widely different from the mechanism employed, by nature; more
especially if this principle include in itself, as a particular case, those before used by
M. Cauchy and others, and also lead to a much more simple process of calculation. The
principle selected as the basis of the reasoning contained in the following paper is this:
In whatever way the elements of any material system may act upon each other, if all the
internal forces exerted be multiplied by the elements of their respective directions, the
total sum for any assigned portion of the mass will always be the exact differential of
some function. But, this function being known, we can immediately apply the general
method given in the Mécanique Analytique, and which appears to be more especially
applicable to problems that relate to the motions of systems composed of an immense
number of particles mutually acting upon each other. One of the advantages of this
method, of great importance, is, that we are necessarily led by the mere process of the
calculation, and with little care on our part, to all the equations and conditions which
are requisite and sufficient for the complete solution of any problem to which it may be
applied.

One has to remark that Green was British, while Cauchy was French. It is therefore
false that variational principles are preferred by the French School. Interestingly, per-
haps in an ironical sense, Lagrange (Lagrangia) was Italian, born in Turin. Even if Green
does not explicitly state that every Poisson ratio may actually be observed, by using the
principle stated in the previous excerpt, i.e. by using the existence of a deformation
energy function, and by assuming that it is definite positive, it is easy to prove that the
Poisson ratio must vary between -1 and 0.5.

35 Who is not afraid to declare to be a follower of Lagrange.
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Many scientists did not believe that it was possible to observe a negative Poisson ratio,
and they even tried to prove it. However, if the Poisson ratio is greater than -1, there
is no “creation of energy” argument which is prohibiting it. And the modern theory of
metamaterials and 3D printing technology has proved that, once more, something which
is not prohibited by the conservation of energy can exist.

It has to be remarked that all the dispute about the Poisson ratio may seem to be a vain
and purely abstract theoretical discussion, and that actually many “practical” scholars
may have believed that it was a dispute very similar to the one concerning the “sex of
the angels,” which occupied many ancient theologians. We do not believe that this is the
case as the theoretical controversy anticipated for many years the practical application
of the corresponding technology. For instance, Goretex is a material having negative
Poisson ratio, whose application in surgery has saved the lives of many children.36 There
is little doubt about the existence of a cause/effect relationship between the anticipation
and the actual realization. Needless to say, the ontological problem asking:

What can exist?

and the related problem

What do we expect could be observed?

are too general to be studied using the scientific method. However, if we limit ourselves
to a more particular problem:

What Poisson ratios can be observed?

then it is possible to build a robust theory (never falsified up to now) that can answer
this question.

In thermodynamics and continuum mechanics, similar ontological problems have
been formulated and discussed. A detailed historical presentation of the related ideas
can be found in [20, 22] and an erudite, but greatly biased, collection of results in
the field is given in [46] and [47]. While it is clear that in order to encompass heat
transfer phenomena the principles of mechanics must be somehow enlarged, the effort
by Coleman and Noll (see again [46]) to base mechanics on thermodynamical principles
involving dissipation (or the absence of dissipation) may be criticized.37

Actually, the postulations of mechanics based on the choice of suitable balance laws
require the introduction of suitable constitutive equations to formulate well-posed math-
ematical problems. The choice of such constitutive equations, as is usually done in
incomplete mathematical theories, is assumed to be necessary after the observation of
experimental evidence. From an epistemological point of view such a process too much
resembles a form of inductivism to be completely acceptable. Moreover, clearly, not
all the logically possible constitutive equations necessarily describe some observable
phenomena. Therefore, following the ideas of Clausius and Duhem, the introduction of
a criterion to determine whether this is the case or not, is required.

36 see, e.g., https://www.goremedical.com/products/cardiovascularpatch.
37 Gabrio Piola was among the earliest who maintained the point of view that a mechanical theory should be

formulated without resorting to thermodynamics (see [24]).

https://www.goremedical.com/products/cardiovascularpatch
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Here the literature splits. On the one side there is the so-called continuum thermody-
namics, whose biggest modern champion has been Truesdell. The mechanical balance
laws are completed by a law of conservation of energy and the demand that entropy
production is always positive. Only constitutive equations assuring this last condition are
said to be physically admissible. The ontological implications of the entropy principle
are therefore clear.

On the other side, it is possible to introduce, for purely mechanical phenomena, a
Lagrangian postulation scheme which departs from the choices made by Truesdellians
(see, e.g., the works of Toupin, Mindlin Sedov, Germain, Landau). The extended
Hamilton–Rayleigh principle is assumed to be the basis of (possibly) dissipative
mechanics, and a purely mechanical theory can be developed without explicit reference
to any thermal phenomenon. In our opinion, the spirit of Green is closer to this last
postulation choice and the one preferred in the present work. As a consequence in this
book we have assumed that:

Given a certain set of Lagrangian kinematical descriptors (belonging to a finite or infinite
dimensional space of configurations), a Lagrangian density function and a Rayleigh dissipation
function, both positive definite in the velocity variables, it is possible to synthesize a
(meta)material whose motion is governed by the corresponding extended Rayleigh–Hamilton
principle.

The reader may wonder why such a conjecture is believed to be true. We remark that
the stated conjecture is only a “working assumption,” a “postulate,” and represents a
powerful tool of scientific investigation, even though one cannot exclude the possibility
that it may be falsified in the future.

4.6.4 Same Name for Different Things or Different Names for the Same Thing?

Mathematics is the art of giving the same name to different things. Henry Poincaré in Science
and Method.38

It has been claimed that the quote which starts this subsection was a response to this
other quote: “Poetry is the art of giving different names to the same thing.” Even if we
cannot delve here into the investigations needed to distinguish between the different
natures of the these activities of the human mind, that is mathematics and poetry, it is
clear that the “economy of thought” evoked by Mach is a peculiar characteristic of any
scientific intellectual activity. On the contrary, as formalized in his “Satirical verses” by
Giambattista Marino:39

38 The authors must thank Richard Toupin for having shared with the elder of them the considerations which
are presented here.

39 Giambattista Marino (sometimes called Giovan Battista Marini, 1569–1625) was a Neapolitan poet, most
famous for his long epic L’Adone. For sure, Marino includes in his techniques “the art of giving different
names to the same thing” for impressing the reader.
The Cambridge History of Italian Literature states the he is “one of the greatest Italian poets of all time.”
He founded the school of Marinism, also called “Secentismo” (i.e. the art of poetry of the seventeenth
century) characterized by the “use of extravagant and excessive conceits.” Marino’s poetry, further
magnifying the “artificiality of Mannerism,” was based on a systematic construction of antitheses, on the
use of a large range of complex wordplays, on exaggeratedly detailed and pompous descriptions and on a
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È del poeta il fin la meraviglia. . . ,

that is: “the aim of the poet is the marvel [of the reader]”.40 This belief is widespread in
literary criticism. For instance, in [49] we find the statement:

. . . given this freedom to manipulate the historical materia [in Italian in the text] the poet must
fashion the imitation to delight the reader’s intellect and to induce marvel, or meraviglia. The
features distinguishing poetry from history thus involve two basic criteria that seem mutually
incompatible: verisimilitude and marvel.

In our opinion scientists should not pursue the search of marvel and should systematically
call by the same name concepts which are coincident.

There are too many different “labels” used in modern theoretical and applied mechanics
which are invented to characterize “novel” or “original” research fields or specialist
disciplines41 These labels are a kind of “flag” or a kind of “coat of arms”42 used to
distinguish one camp from another. Without the acceptance by the establishment (camp)
owning the name, as if it were a trademark, one cannot claim to be an expert in a
discipline. Many academic battles are fought to become the owners of such trademarks.
In the introduction section whose title is The importance of a universal terminology we
have listed some of the aforementioned coats of arms in the field of the theory of meta-
materials and some related fields in experimental mechanics, having some relevance
in technology. We could continue here by adding many other names and many other
references. Clearly such an enlargement would be useless, as we believe that our point
is already sufficiently clear.

The multiplication of labels is misleading, as the layman or the young scholar may
believe that he is dealing with different research fields while they are in reality coin-
cident. There are papers in which the only contribution consists in rephrasing some
theories in a different language or in calling well-known objects by different names.
Such social phenomena are omnipresent in the history of science and are likely to con-
tinue into the future. Often the only result which the aforementioned rephrasing process
produces concerns the change of destination, from one research group to another, of
some research grants. This is an unfortunate circumstance in the perspective of the
advancement of science.

refined and elegant musicality of the verse, which seemed to be obtained after a long research work. His
style enjoyed an immense success in the whole western culture.

40 He continues by stating: “. . . parlo dell’eccellente e non del goffo, / chi non sa far stupir, vada alla
striglia!” i.e. “. . . I am talking about the excellent [poet] and [I am not referring to the] vapid [one], / who
knows not how to stupefy, let him go back to the stable and currycomb!” (the second part being taken
from [48]).

41 We claim that the theory of metamaterials is a part of theoretical and applied mechanics.
42 The original meaning of the expression denoted the principal part of a system of hereditary symbols

. . . used primarily to establish identity in battle. Subsequently the meaning of the word arms evolved and
assumed the meaning of family descent, adoption, alliance, property ownership, and, eventually,
profession. In modern science the name of a discipline professed is used to denote the group of allied
researchers fighting, e.g. to get financial support from various financing entities.
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4.6.5 Continuum Models versus Discrete Models for Metamaterial Design and Modeling

The ideas of continuum mechanics are used, in general, to model the deformation phe-
nomena occurring in all types of physical entities. Naturally they are used frequently
to describe the mechanical behavior of metamaterials. Following a tradition established
in the first half of the nineteenth century (see [23, 24]), the macroscopic behaviour of
metamaterials, consisting of mechanical systems at some microscopic length scale, are
described with continuous models. However, we see no persuasive reason which may
justify such an assumption, in the most general case.

Recently, the specific problem of the synthesis of (meta)materials having a deforma-
tion energy which depends only on second gradient of displacement has been, at first,
attacked and theoretically shown to be resolvable by using homogenization methodolo-
gies. In [38] this has been done in the case where both at the micro and macro scales,
the considered mechanical systems can be described by means of continuous models.

It should be noted explicitly that the problem of synthesizing a “second gradient”
(meta)material, was not motivated initially by any technological demand. Instead the
problem of determining if one can find a microstructure which is able to show at a
certain macro level a second gradient behavior was purely a theoretical one. Although it
is clear (see [50]) that strong motivations can be established from engineering applica-
tions for such intellectual efforts, the synthesis problem was initially formulated to face
a theoretical challenge. The driving theoretical reason was that even the consistency
of mathematical continuum models involving deformation energies depending on the
second (and higher) gradient of displacements was continuously and everely questioned
both from a physical and a mathematical point of view. Certain ambiguous statements
in [51], suggested to some scholars that higher gradient models were not compatible
with the second principle of thermodynamics. Many years later, Gurtin himself clearly
dismissed such an interpretation of his results.43

In reality, the scientific controversy regarding the physical meaning and the logical
status of higher gradient models is not at all modern. Gabrio Piola had already been
criticized when he formulated his mathematical models for continuous materials by
introducing deformation energies depending on higher gradients of displacement (it is
further noteworthy that Piola had also formulated peridynamics in 1850, see [23]). Piola
himself, in order to answer the attacks on the soundness of his continuum models and the
true physical content of his theories, decided to resort to the study of a homogenization
problem, exactly as done more recently for instance in [38] or [53]. Indeed, Piola could
prove the existence of mechanical systems which had to be modeled with his more com-
plex mathematical theories by using a micro–macro identification and homogenization
process. This process was based on the following steps:

43 In [52] one finds the words “In two monumental works, Toupin [a and b, see below] derived general
balance equations and associated traction boundary conditions for an elastic body whose strain energy
depends on first and second gradients of the deformation,” where the references are a. Toupin R.A.
(1962). Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11:385–414 and b. Toupin R.A.
(1964). Theory of elasticity with couple-stresses. Arch. Ration. Mech. Anal. 17:85–112.
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i) the introduction of a discrete model for a microscopic mechanical system charac-
terized by simply interacting particles distributed, in the reference configuration,
on a geometric lattice;

ii) the description of the microscopic system of particles by means of a finite dimen-
sional model, characterized by a finite set of Lagrange parameters and an action
functional;

iii) the formulation of the principle of virtual work at micro-level;
iv) the introduction of a macro–micro kinematical correspondence (via what we can

call Piola’s Ansatz) and the subsequent formulation of the principle of virtual
work at the macroscopic level in terms of macroscopic kinematical descriptors
and microscopic constitutive equations;

v) the determination of macroscopic constitutive equations by assuming that the
microscopic and macroscopic virtual works are quantitatively equal.

To our knowledge, Piola supplies one of the first homogenization procedures, and pos-
sibly the first formulation of macroscopic higher gradient continuum models, found by
assuming that inter-particle interactions at the micro-level have a short range. The pos-
tulation of the theories of higher gradient continua, as formulated by Piola starting from
the principle of virtual work, generalizes the postulation preferred by Cauchy and all of
his epigones. The postulation based on the principle of virtual work is mathematically
more sophisticated and complex, and this circumstance gained many opponents to the
point of view championed by Piola. Such a circumstance is not completely surprising as
one should expect to formulate more complicated models for more complicated mechan-
ical systems. However, Cauchy continua became the preferred model in engineering
sciences. Their application to a very large class of phenomena and materials allowed
for surprisingly quick and really relevant advancements in many technological prob-
lems. Moreover they allowed for the clear understanding of many important mechanical
phenomena. In a sense, engineering sciences have been hostage of the great success of
Cauchy continua. Indeed too many scholars, notwithstanding the early warnings formu-
lated by Piola, finally started to believe that they represent, for deformable systems, the
most general model which one can possibly formulate.

In our opinion, instead, it is very important to try to solve the following class of
problems (see [25, 40]:

Given a macroscopic length scale, a set of kinematical macroscopic descriptors, a deformation
energy functional and a Rayleigh dissipation functional, to find one or more microscopic length
scales, a set of microscopic materials and suitable microstructures such that the complex
microscopic system behaves at macro-level as specified by the given macroscopic functionals.

Based upon the ontological considerations developed in the previous subsections, we
deem that such a class of problems can be solved, and that indeed such complex mechan-
ical systems truly exist.

The particular problem of the synthesis of second gradient materials has been
solved by using architectured microstructures. The proposed synthesis problem was
proven to have a solution by using a “double scale” or “two steps” homogenization
process in [53, 54]. The strategy chosen in these papers is the following: at first,
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“slender” continua are considered to give, after a first homogenization process, some
beam elements; in a second step, the beams are interconnected by ideal pivots and,
subsequently, a second homogenization process is performed, finally proving that at the
chosen length scale the designed mechanical system really behaves as a second gradient
material.

In the aforementioned papers, the synthesis process described is simply conceived at
a conceptual level, while in, e.g., [50] it is proven that using 3D printing it is possible to
practically realize such structures. When considering a lattice of beams as a basic micro-
structure, the ideal pivots appear to represent a preferred or, even, an essential class of
constraints for the synthesis of second gradient macroscopic continua. In this context, it
is remarkable that the homogenized macro equations obtained (see [39]) present some
apparent mathematical pathologies. To be precise, certain well-posedness results cannot
be immediately proven for the second gradient equilibrium equations obtained. Some
nontrivial elaborations of available mathematical results are needed to extend even the
existence and uniqueness results for equilibrium configurations in linearized regimes.
These mathematical aspects of the formulated models reflect the behavior peculiarities
of the metamaterials considered.44

In order to investigate experimentally the behavior of perfect pivots as constraints
occurring in synthesized microstructures, one has to face the following technological
problem [56]:

Is it possible to find innovative design strategies and some related production process which
allow for the construction, with additive manufacturing, of the conceptually conceived
pantographic sheets, whose pivots can be twisted without storing any relevant deformation
energy and with negligible dissipation?

Fortunately, it was possible to find a design and realization strategy which allowed for
the printing of such constructs as monolithic specimens. The realization procedure was
such that no post-assembly is required to have a functioning specimen.

The driving motivations to construct and study pantographic sheets with perfect pivots
were the purely theoretical problems and demands concerning continuum models (i.e.
the relationships between microscopic and macroscopic models, their logical consis-
tency and their predictive capacity). Quite unsurprisingly, however, useful byproducts
of interesting microstructures which are very promising for engineering applications
were obtained (see, e.g., [50, 57, 59, 60]).

In order to design engineering devices by applying the so found generalized contin-
uum models, one has to predict and control the behavior of the novel metamaterials.
To this aim, it is necessary to solve, in general, the complex nonlinear equilibrium or
dynamical problems. This can be done by using suitable and sophisticated numerical
methods. In this context, we have remarked the existence of a vicious circle when
deducing and using continuum models. Indeed, we observe that:

44 On the other hand, the mathematical (apparent pathologies) mentioned possibly may have great interest of
their own. Indeed, the theoretical problems to be solved for overcoming them are a beautiful conceptual
challenge, but also may disclose new phenomena of relevance in the applications.
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• The mechanical behavior of metamaterial microstructures in many cases is more
readily described by postulating finite dimensional Lagrangian models, and, if
necessary, by considering a Rayleigh potential together with the Lagrangian, in
order to account for dissipation phenomena. This was the point of view adopted
by Piola (see [24]).

• The Euler–Lagrange equations obtained by imposing the stationarity of action,
eventually modified by introducing a Rayleigh potential, may supply a system of
ordinary differential equations. These equations are, in general, nonlinear and
possibly involve as many unknown functions as Lagrangian parameters. This
means that, without powerful numerical computation tools, discrete Lagrangian
models do not supply a viable method for obtaining predictions.

• Piola (and his contemporaries), in order to get some predictions suitable for some
well-specified engineering problems, introduced homogenization procedures
leading to continuous models. These models could be studied by the methods
of classical mathematical analysis. In other words, Piola transformed the Euler–
Lagrange equations deriving from the stationarity of an action functional for
a finite dimensional system into partial differential equations (see [25]). It is
noteworthy that the homogenized continuum models have a range of applicability
which is restricted by the finite size of the primitive cell constituting the
microstructure.

• The theory of partial differential equations could, in many cases, present
much greater mathematical difficulties than the theory of ordinary differential
equations.45 Therefore, the homogenization process is useful only in those cases
of designed metamaterials in which the obtained reduction of the number of
unknown functions compensates the increase of difficulty in the solution of
the resulting partial differential equations. This last circumstance happens, for
instance, when semi-inverse methods à la De Saint-Venant or the method of
separation of variables are applicable.

• Finally, in order to get predictions by means of continuous models, discretization
methods are necessarily introduced, using, for instance, finite differences or finite
element methods.

The above points indicate the possibility that a vicious circle may appear in many of the
investigations presented in the recent mechanical literature. Indeed, one could question
the necessity of introducing the described intermediate step involving homogenization.
As the intermediate continuum model is to be subsequently discretized in any case,
one could decide to apply numerical methods directly to the initial discrete model.
Moreover, this initial model is usually formulated on the basis of a mechanical
understanding of the considered system, while in the discretization of the continuum
model one is usually driven only by the considerations of computational nature. In

45 There exists an existence and uniqueness theorem for Lipschitz continuous explicit systems of ordinary
differential equations, while Hadamard has shown that such a general theorem is far from being
formulated for partial differential equations. Therefore, in general, the second equations are “more
difficult” to solve than the first.
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the cases in which an initial discrete model has been inferred, it is unclear why
it should be convenient to first homogenize (to find a continuum model) and then,
again, to discretize the continuum model, losing in this last step all of the presumed
phenomenological understanding of the first step. We suspect that Lagrange and
Piola were aware of the central role of continuum models in mechanics. It is quite
likely that they considered continuum models simply as a useful calculation tool,
but there is a need for a detailed exegesis of their published works to confirm this
suspicion. We believe that this Gordian Knot must eventually be cut. This can be
done by simply refraining from the introduction of any continuum model to describe
metamaterials. For this reason, we have described the general method of discrete
Lagrangian modeling in a separate chapter and we have shown how pantographic sheets
can be described by using such a method. Moreover, we have also shown how discrete
models and the discretization of homogenized continua may produce exactly the same
predictions.

4.6.6 Therefore: Why Discrete Models?

Continuous models were introduced at the beginning of the nineteenth century probably
as a “computational tool.” Indeed, discrete, atomistic models which, by the way, were
believed then to be more physically meaningful, presented formidable mathematical
problems. They required the solution of systems of ODEs having many (too many)
unknown functions or the determination of equilibria attained in configurations charac-
terized by the same amount of unknown parameters.

Homogenization and the solution of PDEs seemed, at the époque, the most powerful
way for applying mathematical analysis. Modern engineering sciences started success-
fully, in this way, to produce valuable predictive tools for technological applications.
However, soon, the closed form methods of solutions started to show some limits in
their range of applicability. Even if the Soviet school (see, e.g., [61]) did manage to
push beyond any imaginable limit the power of the analytical techniques and could
find beautiful solutions to very interesting problems, continuum models, without the
support of powerful numerical computing machines, were unable to continue supporting
the technological innovations already developed at the beginning of the second half
of the twentieth century. Discretization of continuum models then became necessary,
especially for solving nonlinear problems.

This endeavor, and the related issue of finding the correct mathematical formulation
for existence and (eventually) uniqueness problems, required the development of sophis-
ticated mathematical theories. Again, the Soviet school contributed greatly. Sobolev
spaces theory supplied the required strong foundation for both theoretical and numer-
ical investigations. Functional analysis showed immediately that infinite dimensional
configuration spaces hide very complex structures and, sometimes, very pathological
mathematical phenomena.

Some scholars have therefore decided to avoid having to face the pathologies exhib-
ited by continuous models, which do not seem to be always physically meaningful, or
whose possible phenomenological relevance needs deeper investigation. Hence, they
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have tried to bypass the formulation of continuum models: it was preferred to conceive
discrete Lagrangian models directly, even for the most complex mechanical systems. In
doing so, the discrete models directly reflect the most relevant mechanical properties to
be modeled (see [62–68]).

Accepting this point of view, one can avoid considering all the mathematically diffi-
cult problems concerning the well-posedness of boundary value problems for nonlinear
PDEs. The existence of functions like Cantor Devil’s staircase (which is uniformly
continuous but not absolutely continuous, and is strictly increasing but has almost every-
where zero derivative) introduces, in continuum models, some mathematical entities
whose mechanical counterpart is not always evident, and in some cases impossible
to find.

The theory of discrete Lagrangian systems, on the other hand, supplies problems
whose well-posedness is assured by relatively simple existence and uniqueness theo-
rems such as, for instance, the existence and uniqueness theorem valid for Lipschitzian
ODEs (Picard–Lindelöf theorem), or the more general existence theorems due to Peano
or Carathéodory. Therefore, the modeler, after having chosen the family of mechanical
systems he/she wants to describe, can begin his/her analysis by introducing the finite
set of Lagrangian parameters whose determination seems sufficient to specify, in a
satisfactory way, the state of the considered system.

Describing, for example, the case of pantographic sheets with perfect pivots, this set
of parameters must include (but in general may not be exhausted by) the positions of the
pivots interconnecting the two families of fibers (see Fig. 4.2). Such a choice is sufficient
to describe the deformation state of the sheet, if one can assume that the said pivots
move in such a way that the pair of beams they are interconnecting always remain at a
fixed distance. On the other hand, when the said pair of beams have a separation which
varies in the deformation process, it may be necessary to introduce (see the treatment
proposed in [59]) a richer set of Lagrange parameters. In the case of perfect pivots, only
the beam segments interconnecting the pivots are storing deformation energy, and they
will be modeled by introducing suitable expressions for elastic energies and stiffnesses.
It can be observed that to describe the deformation energy of the said segments, further
deformation mechanisms (not accounted for in [41]) and kinematical descriptors are
needed.

Therefore, the discrete Piola–Hencky model previously considered can be improved
by adding additional degrees of freedom, i.e. by considering the positions of points
interconnecting two beam subsegments (between adjacent pivots). Once a mechanical
understanding of this choice of Lagrangian parameters is attained, one can recognize
that: i) the pivots are where the interactions between pairs of fibers can be localized;
ii) the extra bending energy relative to each family of fibers can be localized in the
points interconnecting two beam subsegments. In the most general Lagrangian dis-
crete model, the complete set of kinematical parameters includes also the positions of
these newly introduced intermediate points, those whose displacement describes the
bending deformation of the fibers between two interconnecting pivots. Once the set of
Lagrange parameters is found and the kinetic and potential energies of the systems are
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conjectured by introducing suitable Lagrangian functions, then the problem of deter-
mining the motion (or the equilibrium configurations) reduces to the integration of a set
of ODEs, for which a complete (and numerically implementable) theory exists (and is
well established).

In this way, the problem of predicting the behavior of the considered mechanical
system is reduced to the choice of an efficient step-wise procedure for the determination
of stable equilibrium points. Very efficient methods, that are also applicable to the case
of nonlinear problems, proceed by finding equilibrium configurations depending on
a “load” parameter appearing in the Lagrangian, or constraining the Lagrange coor-
dinates. For certain specific values of the load parameter, it is often possible to find
the equilibrium configurations easily. Then, by slowly varying the load parameter and
by using linearizations with respect to this parameter, one numerically constructs, in
a reliable way, a whole family of equilibrium configurations for the corresponding
family of nonlinear problems. The reason why the aforementioned modeling procedure
is successful can be easily explained. Indeed, the numerical codes so conceived apply
to a discrete model, which is directly inspired by the mechanical understanding of the
deformation mechanism of the systems under study. In these cases, there is no need to
develop complex constructions and to apply advanced mathematical theories aimed at
developing efficient discretization procedures of (mathematically) very rich continuum
models.

To summarize, we observe that when homogenized continuum models are introduced,
the space of configurations is very rich, and includes some configurations which it
is quite likely will not be observed. This not-always-useful richness and complexity
encumbers the mathematical modeling and the search for the solutions to the corre-
sponding problems. A non-necessarily-complex model must be simplified to exclude
“non-physical” solutions with a similarly complex mathematical effort (i.e. the for-
mulation of the right finite element code). Starting directly from a judicious discrete
model leads us to bypass problems which are “useless” in a specific modeling context.
In choosing discrete models, we can often use robust and efficient numerical algorithms.
Such algorithms can be used for finding motion or equilibrium configurations of a
system as subroutines in complicated structural optimization procedures, which are
paramount in metamaterials design.

We have given here a tangible example of a “theory driven” study for complex phe-
nomenologies, i.e. the phenomenologies of “to-be-invented” metamaterials, a field in
which some (ancient) ontological problems have a relevant technological impact. We
are aware that structural optimization procedures are relevant in the process of designing
metamaterials. We believe that logically rigorous methods, based on a theoretically
founded procedure, are the only ones which may lead to technologically important
results.

Therefore, we deem that studies based on purely “data-driven” approaches will
always require an untreatable and probably useless amount of computing. Indeed, in
our opinion, when an effective artificial intelligence is conceived, it will have to use as
its basis an extremely advanced version of “theory-driven” metamaterial design.
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4.7 Data-Driven or Theory-Driven? Final Epistemological Reflections
Motivated by the Desire to Design Novel Metamaterials

There are scholars who use an “extravagant” way for designing metamaterials. They use
their artistic inspiration, similitude considerations and “physical” intuition46 to “print”
microstructures. This is nowadays very easy as, by using simple software to draw a
geometrical figure, it is possible to have constructed, via a 3D printer, very complex
specimens. The deep scientific understanding needed to design a 3D printer and the
profound mastering of the logical structures of programming languages needed to drive
it can be ignored by the final user of this technology. Thus, such a final user may believe
that a 3D printer emerged as the final product of a test-and-trial process. Therefore, this
user continues their researches on metamaterials following the same attitude.

It is not uncommon that a previous deep scientific knowledge is used in a naive
and non-systematic way to try to advance knowledge. A paradigmatic example, in the
history of science, is given by the Architecture School started by Vitruvius. His poor
understanding of scientific theories is described carefully in [1]. Vitruvius simply trans-
mitted to Roman culture some “rules” of practical use in engineering, without framing
them into well-posed and complete theories.47 However, his treatise managed to give
momentum to the technological development of Rome.

Those scholars in metamaterial design, who follow the tenets of Vitruvius, write
papers showing beautiful images of 3D printed specimens, and then discuss informally
the properties of what has been printed. The need for introducing a mathematical model
is understood only by a few. However, the belief that the only available theory is 3D
Cauchy continuum mechanics, as the accepted text by Truesdell states, remains rather
prevalent. Consequently, the mathematical models introduced by these scholars remain
too inhibited to be predictive. As it is believed that the most general possible math-
ematical model has been used, very often, ambiguous conclusions and statements are
made implying that the findings of these works are too advanced to be mathematically
described.

In a sense, there are scholars who generate certain microstructures, more or less
randomly, and then try to verify a posteriori if the built physical object has some
interesting properties. Such scholars believe in the heroic vision of scientific progress.
Their approach clearly clash with the methodology expounded by Archimedes in his
On the Method. Techniques based upon the random generation of a huge amount of
microstructures and their subsequent analysis via some “data-driven” theory are indeed
a more modern evolution of the heroic vision of science. The saving role of the geniuses’

46 We have often heard talk of physical intuition. However, what it is or what is its nature, we have been
unable to understand.

47 However, it is possible to state that Vitruvius was aware, by looking at the available sources, of the
importance of a theory. Indeed, he writes that: “Wherefore the mere practical architect is not able to
assign sufficient reasons for the forms he adopts; and the theoretic architect also fails, grasping the
shadow instead of the substance. He who is theoretic as well as practical, is therefore doubly armed; able
not only to prove the propriety of his design, but equally so to carry it into execution.” (LacusCurtius,
Vitruvius: On Architecture, Book I. Retrieved 25 March 2018 at http://penelope.uchicago.edu/Thayer/E/
Roman/Texts/Vitruvius/home.html).

http://penelope.uchicago.edu/Thayer/E/Roman/Texts/Vitruvius/home.html
http://penelope.uchicago.edu/Thayer/E/Roman/Texts/Vitruvius/home.html
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intuition, which is claimed to have allowed for the advancement of science in the past,
is nowadays assigned to the calculation power of modern computers. Unfortunately,
research in artificial intelligence, a serious and promising branch of Archimedean sci-
ence, has not yet reached the level needed to replace human scientific elaboration of
theories for modeling phenomena.48

On the other hand, some lessons from computer-aided manufacturing and the sys-
tematic study of the theory of elasticity must be accepted. The pioneering work by
Milton and Cherkaev gave a theoretical frame in 1995 for the realizability of some
metamaterials [70]. Only in 2012, being guided by the theoretical understanding gained
by the previously obtained mathematical results, some very interesting physical objects
were actually built by using 3D printing technology [71].

In the last few years a wide discussion has been opened on the possibility of deriving
valuable knowledge by simply using “smart” algorithms capable of extracting the rel-
evant correlations from large bases of raw data. The importance of a robust theoretical
approach has therefore been questioned in those fields that are collected under the
common label of “Big Data” research. However, when discussing in detail the methods
used in this Big Data research one almost immediately discovers that data are always
organized by means of some a priori assumptions, which are too often very simple
and, sometimes, even naive. Indeed, some parameterized functional relationships are
postulated a priori and the needed parameters are calculated with varying degrees of
sophisticated interpolation techniques starting from raw data. Such an approach essen-
tially coincides with naive inductivism and has been definitively rejected by modern
epistemology (see again [17]).

Of course, computer-aided manufacturing techniques can easily furnish very large
sets of raw data which one may consider treating with the aforementioned methods.
However, in this book, we provide and discuss examples showing that such an approach
is superficial and has a very limited, or even totally no, prediction power. In particular,
in nonlinear elasticity there are interesting equilibrium configurations much more easily
envisaged by means of geometrical reasoning and suitable methods of calculus of vari-
ations than by means of the blind analysis of enormous databases, either of a numerical
or experimental kind (see [72]). With the examples discussed in this book we hope
to contribute to the debate about the viability of “data-based” approaches, suggesting
that their in vogue position which is privileging them leads to misjudgment of scientific
results and, often, to application of improperly and ill-derived conclusions. In the theory
of the synthesis of metamaterials, we look for physical systems whose phenomenology
is described by the equations which we have chosen “a priori.” We are certain that,
once more, the ancient and powerful vision presented by Archimedes of Syracuse, and
developed in more recent times by Popper and Kuhn, will be the lodestar in our scientific

48 The oldest author of this chapter heard from one of his most prestigious professors the following
statement in 1984: “It is impossible that a computer will manage to win a chess game against a human
player, as the computer needed to perform this task should be bigger than the solar system.” In 1996 Deep
Blue won a chess match against Kasparov. This result has been questioned but in 2006 a match between
Deep Fritz and the world chess champion Vladimir Kramnik dissipated every doubt. In less than 20 years,
the prophecy of a wise and reputed scholar has been disproved. Therefore, we will not try to forecast
when artificial intelligence will be able to replace the human mind in formulating mathematical models.
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understanding of reality, and will propel us towards the bleeding-edge of technological
progress.

Serious scientific or technological problems cannot be solved with purely “data-
driven” methods. Therefore, we do not believe that by simply elaborating a great amount
of data one can solve the problem of the synthesis of useful metamaterials. It is unlikely
that useful metamaterial will be found by randomly choosing microstructures and then
checking the behaviors of the so-chosen microstructures. Moreover, no blind elaboration
of data will lead to reasonable results in a reasonable time span. Data must be elaborated
by an intelligence. It is unimportant that the form is human or artificial, but a form of
intelligence is needed.

In the design of metamaterials, “theory-driven” analysis may lead to an effective
understanding and mastering of technological applications. In this specific context,
the change of scientific paradigm needed to efficiently design metamaterials is clearly
incompatible with a vision which regards science as an activity based upon the barbaric
gathering, not driven by any rationale and not organized with logical tools, of data
which have to be merely treated numerically. To describe the process of the birth of
a star, the seismic response of a complex structure or the design process of a resilient
structure ready to resist strong seismic actions, or to synthesize a novel metamaterial
are all research activities which must be guided by an Archimedean epistemological
vision.

One must start with a theory, i.e. a logically consistent series of conjectures (otherwise called
postulates), and by using this theory one must get predictions to be verified by experimental
evidence.

Data must be organized by means of a theory, but they can never produce a theory
by mere induction. Naive inductivism must be replaced by a sophisticated form of
falsificationism. In his On the Method, which we have cited several times, Archimedes
had already suggested such a methodology to us in the third century BC, and we do not
yet see any reason for changing it.
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5 Lagrangian Discrete Models:
Applications to Metamaterials
F. dell’Isola, E.Turco, E. Barchiesi

5.1 Introduction

In this chapter, we discuss the Lagrangian formulation of mechanics for discrete systems
and its application to mathematical modeling in modern metamaterials science. In order
to distinguish between the discrete or continuous nature of a mechanical system one
has to assess the number of parameters needed to describe its state and evolution.
For instance, the description of positions and velocities of a system made of a set
of N particles moving in a box will require the introduction of 6N variables, since
each particle can move in three independent spatial directions with three independent
components of the velocity. Instead, a continuous system will require an infinite number
of variables to describe its state, since one has to furnish the position and velocity of
a dense set of “infinitely close particles.” An example from the mechanical world is
the description of the deformed shape of a beam subject to certain external loads. In
this case, the state of the system is described in terms of a function, whose domain is
the region of space occupied by the body itself. In both cases it is possible to give a
Lagrangian description of the state and of the evolution of the mechanical system under
analysis. However, while the fundamental tools for their study are the same (namely,
both are founded on the calculus of variations), the technical and mathematical problems
which could emerge are quite different, as will be explained below. Of course, it is
not possible to state in general which approach would better suit the description of a
mechanical system, as it depends on the kind of analysis which we are interested in.
It could be useful to study the relations between discrete and continuous Lagrangian
descriptions of the same mechanical system, in order to investigate when a certain mod-
eling and forecasting technique is better than another [1–7]. This is true, in particular,
in the framework of mechanical metamaterials, where the relations between the (dis-
crete) complex microstructure and the related (continuous) homogenized field theory are
required to motivate and understand the exotic macroscopic behavior. Indeed, it is quite
common in today’s metamaterial science to consider highly controlled microstructures
consisting of (discrete) beam lattices [8, 9, 11–19, 91]. The problem of studying such
types of structures is, however, not at all new. Indeed, in 1864, work by Maxwell
[20] had already addressed the problem of systematically studying beam (not only
truss!) lattices. Unfortunately, his contribution, still representing a cornerstone in the
study of such systems, has been somewhat underestimated and overshadowed by his
other great contributions, despite the fact that the topic was of primary importance at
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the time. Indeed, not much later, with the advent of the Industrial Revolution brought
about by the large-scale production of steel, the theory of structures quickly became an
elective discipline in engineering sciences, leading to many engineering successes, like
the construction of the Eiffel Tower. The same tool can be successfully applied also to
meet the ever more demanding performances needed in today’s engineering systems:
optimization topology is playing a crucial role for designing structures and materials
which can be produced by additive manufacturing, as well as for the development of
material microstructures for designing multi-scale macro-structures, or for exploiting
micro-scale properties to obtain optimal configurations [21–27].

Nowadays, numerical methods play a major role in mechanics, and especially in the
description of metamaterials’ behavior [28–34]. The use of numerical methods has
indeed allowed the majority of the recent advancements in the field of metamateri-
als and, more generally, mechanics. Indeed, the high complexity characterizing the
microstructure of modern metamaterials gives rise to a comparably complex homog-
enized continuous model (these are usually called generalized continuum theories, see
[3, 35, 37–47] for interesting applications) which are, in general, not solvable by means
of the usual calculus techniques. Numerical methods make it possible to discretize the
problem, reducing it to a finite set of ordinary differential equations. Although numerical
methods are a valuable tool in several applications, the discretization techniques behind
them may conceal some disadvantages that could limit their predictive power. Indeed,
such discretization techniques may not take account of the intrinsic microstructure of
the metamaterial, and this could lead to misleading results. The main aim of this work
is to discuss and review an idea proposed in [48] and subsequently developed in [49–
51], in which an ab initio discrete model for a complex mechanical system has been
introduced. This model is directly inspired by the metamaterial’s microstructure and
allows an efficient (as regarding computational efforts) and accurate description of the
system behavior. In particular, we will focus on two systems: the pantographic lattice
and the three-dimensional Elastica.

The chapter is divided in the following way: in Section 5.2 we will recall the
Lagrangian formalism of mechanics. This will be the fundamental tool for the subse-
quent discussions. In Section 5.3, we will discuss in a more precise way the relation
between discrete and continuous Lagrangian descriptions and its importance in modern
mechanics. In Section 5.4, we will introduce the Hencky-type discrete model for
a pantographic sheet. Comparisons between continuous and discrete models with
experimental data will be presented and discussed. Finally, in Section 5.5, a Hencky-
type discrete model for three-dimensional Elastica will be discussed.

5.2 Lagrangian Formulation of Mechanics

This section is devoted to recalling the main features of the Lagrangian formulation of
mechanics. This elegant theory is the result of the efforts of many eminent physicists
and mathematicians of the caliber of Euler, Laplace, Lagrange, Legendre, Gauss,
Liouville, Poisson, Hamilton, and many others. Their motivation was to find a general
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mathematical setting able to unify in a single theory all the physical knowledge of
the observed world. In a sense, Lagrangian mechanics (and of course its complement,
Hamiltonian mechanics) can be considered as one of the first “theory of everything”
in the history of modern science.1 The name of this theory is of course a tribute
to one of the most influential and gifted mathematicians of the last centuries, the
Italian–French Joseph-Louis Lagrange. In his famous treatise Méchanique Analytique
(1788), he presented for the first time Analytical Mechanics, a general method aimed to
analyze dynamical systems by means only of the techniques of infinitesimal analysis.
Its generality and independence from any geometrical considerations is underlined
in the introduction of his treatise by announcing: On trouvera point de figures dans
cet Ouvrage.2 Actually, the field of applications of Lagrangian mechanics in modern
science is astonishingly vast: it is the mathematical framework of dynamical systems,
solid mechanics, signal processing, classical and quantum field theories, network
analysis, quantitative finance, quantum mechanics, biomechanics, etc. (see [54–68] for
multi-physics applications). The reason behind its extensive use lies mainly in the fact
that it is simple to produce, by means of a general procedure, a well-posed problem in
terms of differential equations. In Lagrange’s own words:3

There already exist several treatises on mechanics, but the purpose of this one is entirely new. I
propose to condense the theory of this science and the method of solving the related problems to
general formulas whose simple application produces all the necessary equations for the solution
of each problem. In addition, this work will have another use. The various principles presently
available will be assembled and presented from a single point of view in order to facilitate the
solution of the problems of mechanics. Moreover, it will also show their interdependence and
mutual dependence, and will permit the evaluation of their validity and scope. I have divided this
work into two parts: Statics or the Theory of Equilibrium, and Dynamics or the Theory of
Motion. In each part, I treat solid bodies and fluids separately. No figures will be found in this
work. The methods I present require neither constructions nor geometrical or mechanical
arguments, but solely algebraic operations subject to a regular and uniform procedure. Those
who appreciate mathematical analysis will see with pleasure mechanics becoming a new branch
of it and hence, will recognize that I have enlarged its domain.

The mathematical backbone of Lagrangian mechanics is the calculus of variations.
In the following, we will discuss in details its application to finite-dimensional mechan-
ical systems. We want to use some space here to point out that, although the original
formulation of Lagrangian mechanics was limited to finite-dimensional systems, it is
possible to extend it to infinite dimensional cases. Indeed, Lagrangian mechanics is
a well-established tool in field theories (standard references are the Landau–Lifchitz
textbook series [69] and Arnold’s works on fluid dynamics [70], see also [71]) where
the governing equations of such theories can be obtained by means of a least action
principle, defined in terms of an action functional. Going from infinite to finite dimen-
sional systems, a common application is the so-called modal analysis, performed by
means of the Fourier series theory in Hilbert spaces. In particular, let us suppose that a

1 Note that the founding ideas behind the variational formulation can be traced back to the ancient Greeks.
See [52] Russo for an interesting analysis.

2 “No figures will be found in this work.” [53].
3 Avertissement, in [53].
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given model describes the motion of a system in terms of a partial differential equa-
tion (including time derivatives). By expanding in Fourier series the unknown field
(in terms of space variables with respect to a suitable basis of functions), the initial
differential equation gives rise to many (countably) ordinary differential equations (in
the time variable) whose unknown functions are, indeed, the previously introduced
Fourier coefficients. By introducing suitable approximations, only a finite number of
those coefficients will be relevant for the description of the phenomena under study. This
approximation allows the infinite-dimensional model to be projected (in the sense of the
geometry in Hilbert spaces) onto a finite-dimensional model. To clarify this point, let us
introduce an example. A certain force per unit length is acting on an extensible homoge-
neous wire constrained on a plane, whose ends have fixed positions. In the D’Alembert
model, the wire’s motion is represented by a scalar field u, (whose domain is the segment
[0, l]), which describes the wire’s displacement along the direction orthogonal to [0, l]
with respect to a straight reference configuration. In other words, in the D’Alembert
model, the state of the system is characterized in terms of a function which belongs
to the (infinite dimensional) space of two times differentiable functions with respect to
time and space variables. The following equation describes the time evolution of this
field u:

∂2u

∂t2
− a2 ∂

2u

∂x2
= g(x, t) , in [0, l]× [t0,∞] , (5.1)

where the constant a is the mechanical waves’ speed of propagation through the wire,
and the function g(x, t) represents the aforementioned forces per unit length acting on
the wire. It is possible to expand the functions u(x, t) and g(x, t) in Fourier series as

u(x, t) =
∞∑

n=1

un(t)φn(x) , g(x, t) =
∞∑

n=1

fn(t)φn(x) , (5.2)

where the sequence of functions φn(x) satisfies:

d2φn

dx2
= λnφn, ∀n . (5.3)

In this hypothesis, the evolution equation (5.1) is verified if, for all n,

d2un

dt2
− a2λnun(t) = fn(t) , in [0, l]× [t0,∞] . (5.4)

By introducing some approximations (for instance, due to experimental limitations) all
the Fourier coefficients after a certain order n > N can be neglected. In this way, the
original infinite dimensional model reduces to a finite dimensional one described in
terms of the finite set of Fourier coefficients ui such that i = 1, . . . , N , whose evolution
is given by Eq. (5.4).

Let us now introduce the main quantities which we need in order to describe a finite
dimensional dynamical system in the Lagrangian formalism. In this case, the state of the
dynamical system is characterized by a finite number of degrees of freedom, described
by n Lagrangian coordinates
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q = (q1, . . . , qn), (5.5)

which define the so-called configuration space.
Let us introduce the following definitions:

• Let S be a dynamical system. Its motion, q(t), is represented by a function

q : [t0, t1] ⊂ R −→ R
n , t �→ q(t) =

⎛
⎜⎜⎜⎝

q1(t)
q2(t)

...
qn(t)

⎞
⎟⎟⎟⎠ , (5.6)

which, for each instant of time t , associates q(t) of its Lagrangian coordinates.
The set of all the motions of S will be denoted by M = C2([t0, t1],Rn).

• A curve q([t0, t1]) ⊂ R
n is called a trajectory of the system.

• We call Lagrangian velocity (resp. Lagrangian acceleration) the vector obtained
by computing the time derivative of q(·) ∈ M (resp. q̇(·)):

q̇(t) = dq(t)

dt
=

⎛
⎜⎜⎜⎝

q̇1(t)
q̇2(t)

...
q̇n(t)

⎞
⎟⎟⎟⎠ , q̈(t) = d2q(t)

dt2
=

⎛
⎜⎜⎜⎝

q̈1(t)
q̈2(t)

...
q̈n(t)

⎞
⎟⎟⎟⎠ . (5.7)

5.2.1 Optimum Problems and Fundamentals of Calculus of Variations

Once the suitable mathematical entities have been introduced, i.e. once the kinematics of
the system has been fixed, the time evolution of the dynamical system is determined by
a set of differential equations. Their role is to model the effects of the external world on
the system, while their solutions will determine the admissible motions, among all the
possible ones in M , determined by the particular boundary conditions under analysis.
The choice of such evolution equations has to be done judiciously, taking care that,
once the initial state of the system has been specified, as well as the interactions with
the external world, the motion of the system has to be uniquely determined. In this
regard, uniqueness theorems for the evolution equations’ solutions have to be proved.

Example 5.1 A particular motion is the one of a finite-dimensional dynamical system
at rest in an equilibrium position. Such equilibrium positions are stationary points of its
potential energy, U , which is a function of the n Lagrangian coordinates q1, q2 , . . . , qn.
As is well known from physics courses and as we will see in the following, to determine
the equilibrium positions of a given system, one needs to find the set of vectors q for
which the gradient of U , and hence its first variation, is zero.4

4 Let us consider the Taylor expansion of U :

U (q) = U (q0)+ ∇U |q=q0 · (q− q0) + o(‖q− q0‖).

The term in the frame is stated to be the first variation of the function U in the neighbourhood of q0.
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Determination of the evolution equations for a dynamical system is a crucial step.
However, it may be far from being a trivial task. One of the most important merits of the
Lagrange formulation of mechanics is that it furnishes an algorithmic way to deduce the
differential equations governing a generic dynamical system following the least action
principle expressed below.

Least action principle. Let (S, I ), be the pair made up of the dynamical system S and
the interactions I of the external world with the system. There exists a scalar quantity,
called action, such that the motions of S determined by I make the action stationary.

It is not clear who, among the eminent mathematicians who worked on this problem,
was the first to state this axiom. Without any doubt, D’Alembert proposed to generalize
the Fermat principle for optical paths and Hamilton was able to prove a least action
principle (and as we will see in the following sections, this is the so-called Hamil-
ton’s principle) starting from the cardinal law of dynamics. Moreover, there are hints
that Lagrange and the Italian mathematician Gabrio Piola were already aware of these
results. We shall not pursue, however, any polemical dispute about any originality claim.
In the following, instead, we will discuss the procedure to derive the evolution equations
of a finite-dimensional dynamical system in general by exploiting the aforementioned
least action principle.

First, let us clarify the nature of the action. From the mathematical side, once the set
of Lagrangian coordinates and the corresponding set of motions is established, it is a
functional A which associates with any motion a real number, i.e.:

A : q(·) ∈ M �−→ A
(
q(·)) ∈ R. (5.8)

Let us now give some examples of functionals:

• A first simple example of a functional is represented by the length of a curve lying
on a plane π. Let � : t ∈ [t0, t1] �→ (x1(t), x2(t)) ∈ π be a one time differentiable
function; the functional length associates with the pair of real variable functions
{x1(·), x2(·)} the real number l,

l =
ˆ t1

t0

√
ẋ2

1 (t)+ ẋ2
2 (t) dt , (5.9)

where the symbol ẋ indicates the time derivative of the function x.

• A second example of a functional is given by the area of a plane region whose
boundary is a closed curve �. In this case, the functional area associates with the
pair of functions {x1(·), x2(·)} a real number A(�):

A(�) =
ˆ t1

t0

x2(t)ẋ1(t) dt =
˛

�

x2 dx1 . (5.10)

• Let us consider a material particle of mass m under the action of a conservative
force with a potential U . We call action the functional which associates with the
motion x(·) of the material particle in the interval [t0, t1] the real number
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A
(
x(·)) = ˆ t1

t0

(m

2
ẋ2(t)− U (x(t))

)
dt . (5.11)

• Let us consider a firm F which produces n goods. Let q(t) = (q1(t), . . . , qn(t))
be the production per unit time vector, at instant t , of the goods and let p(t) =
(p1(t), . . . , pn(t)) be the market prices vector. Finally, let C be the function which
associates with the produced quantity q(t) and the production rate q̇(t) the pro-
duction cost. If F is subject to an interest rate μ, then its profit in the interval
[t0, t1] is given by the functional:

G =
ˆ t1

t0

exp
(−μ(t − t0)

)(
p · q− C(q, q̇)

)
dt . (5.12)

Clearly, the firm F is interested in the production strategy q(t) which will max-
imise the profit functional G.

In order to give a more constructive formulation of the aforementioned axiom, let us
consider a dynamical system S described in terms of a set of Lagrangian coordinates
q. Let MI (t0, q0, t1, q1) ⊂ M be the subset of isochronic motions, i.e. all the motion
q(·) ∈ M such that:

q(t0) = q0 , q(t1) = q1 . (5.13)

In other words, the set MI contains all the motions characterized by the same initial and
final configurations which take place in the same interval of time (t0, t1). Therefore, by
considering a motion q ∈ MI (t0, q0, t1, q1), we can define a function δq(t) such that

δq(t0) = 0 and δq(t1) = 0 , (5.14)

an admissible variation of the motion. This requirement implies that any motion
q(t)+ δq(t) is isochronic to q(t).

Let us now introduce a function

L : R
n × R

n × R −→ R, (5.15)

whose Hessian with respect to Lagrangian velocities is positive definite, namely:∣∣∣∣
∣∣∣∣ ∂2L

∂q̇i∂q̇j

∣∣∣∣
∣∣∣∣ > 0 . (5.16)

We will call such a function L satisfying the condition (5.16) a Lagrangian function.
The role of this function is crucial. Indeed, as we will show soon, it is the basic ingre-
dient of the action functional and it has to contain information about the constitutive
properties of the dynamical system as well as its interaction with the external world.
Once a Lagrangian function is chosen, it is possible to define the following action
functional, defined in terms of the set of motions q(·) ∈ M:

A
(
q(·)) = ˆ t1

t0

L
(
q(t), q̇(t), t

)
dt . (5.17)

We are now ready to state, for the case of finite-dimensional systems, a more precise
formulation of the least action principle by D’Alembert:
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axiom 5.1 Lagrangian least action principle. Once a Lagrangian L has been chosen,
the interaction that is modeled by L determines an evolution of the system considered
in terms of the motion q∗ which yields the action functional (5.17) stationary, when such
a functional is restricted to the set MI of isochronic motions to q∗.

The condition for a motion to yield the action functional stationary is that the func-
tional’s first variation vanishes when evaluated on that motion. In the next subsection,
we explicitly show how this requirement provides us with the evolution equations of
the dynamical system. By not making explicit the form of the Lagrangian function, we
will keep the discussion general, obtaining in this way the general expression of the
evolution equations of a generic finite-dimensional dynamical system in the Lagrangian
formalism, namely the Euler–Lagrange equations.

5.2.2 Euler–Lagrange Equations

The first variation of the action functional on motions isochronic to q∗ is defined as:

δA
∣∣
q∗ : = A(q∗ + δq)− A(q∗)

=
ˆ t1

t0

[
L(q∗ + δq, q̇∗ + δq̇, t)−L(q∗, q̇∗, t)

]
dt .

(5.18)

Assuming L differentiable and by expanding the difference in Eq. (5.18) in Taylor
series, the previous expression becomes

L (q∗ + δq, q̇∗ + δq̇, t)−L(q∗, q̇∗, t) = ∂L

∂qi

∣∣∣∣
q∗
δqi + ∂L

∂q̇j

∣∣∣∣
q∗
δq̇j + o(δqi , δq̇j ) ,

(5.19)

where Einstein’s notation for the sum is assumed. By replacing this expression in
Eq. (5.18) we obtain the action functional’s first variation as:

δA
∣∣
q∗=

ˆ t1

t0

(
∂L

∂q

∣∣∣∣
q∗
· δq+ ∂L

∂q̇

∣∣∣∣
q∗
· δq̇

)
dt . (5.20)

By using Leibniz’s rule on the second addend

d

dt

(
∂L

∂q̇
· δq

)
= d

dt

(
∂L

∂q̇

)
· δq+ ∂L

∂q̇
· δq̇ , (5.21)

since

δq(t0) = δq(t1) = 0 �⇒
[
∂L

∂q̇
· δq

]t1

t0

= 0 , (5.22)

one obtains:

δA
∣∣
q∗=

ˆ t1

t0

[
∂L

∂q

∣∣∣∣
q∗
· δq− d

dt

(
∂L

∂q̇

)
· δq

]
dt . (5.23)
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A motion q is said to be stationary (or extremal) for the action functional if the first
variation of the action δA|q∗ is zero. In formulas, q∗ is extremal if and only if:

δA|q∗ = 0, ∀δq : δq(t0) = δq(t1) = 0. (5.24)

This can be seen as a generalization of the concept of gradient for real functions of
several variables. The modern formalization of this idea was due to Gâteau and Fréchet
(see for example [76]), but the first to propose it was probably Euler. To make this
analogy clearer, let us discuss the following example: by computing the first order Taylor
expansion of a function f (x) one has that, up to infinitesimals of greater order:

f (x)− f (x0) ∼= gradf |x=x0
(x − x0). (5.25)

We call a point x0 a stationary point of f (x) if and only if grad f |x0
= 0. In other

words, we require that, in correspondence of stationary points, the first variation of f

vanishes. Therefore, we define Eq. (5.23) in an analogous way to (5.25) and we observe
that the first variation of the function f and of the functional A have been obtained
by applying to the variations (x − x0) and δq, linear maps whose images are given by
grad f |x=x0

(x − x0) and by δA|q∗ , respectively.
We are ready to state the following theorem:

theorem 5.1 Euler–Lagrange theorem. For an action A, a motion q∗ is stationary
if and only if

δA
∣∣
q∗=

ˆ t1

t0

[(
∂L

∂q
− d

dt

(
∂L

∂q̇

))
q∗
· δq

]
dt = 0 , ∀δq : δq(t0) = δq(t1) = 0 .

(5.26)

Let us now introduce the following theorem by Lagrange:

theorem 5.2 Lagrange theorem. Let I ⊂ R and

g1 : I −→ R, g2 : I −→ R (5.27)

be continuous in their domains. Then:ˆ
I

g1(t)g2(t)dt = 0 , ∀g2(t) ⇐⇒ g1(t) = 0 , ∀t ∈ I . (5.28)

Due to the previous theorem, we have the following proposition:

proposition 5.1 Euler–Lagrange equations. A motion q = q(t) ∈ M yields the
action stationary for synchronous variations between fixed extremes if and only if it is a
solution of the following differential problem:(

∂L

∂q
− d

dt

(
∂L

∂q̇

))
q∗
= 0,

{
q∗k (t0) = qk1

q∗k (t1) = qk2
, k = 1, . . . n. (5.29)

Equations (5.29) are known as the Euler–Lagrange equations associated with the vari-
ational problem (5.26).
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Some observations are now in order:

• We remark firstly that the Euler–Lagrange equations are non-linear ordinary dif-
ferential equations and therefore to find their solutions is, in general, not an easy
task. Actually, only in a few cases is it possible to integrate in closed form non-
linear differential equations, namely to determine the set of their solutions in
terms of elementary functions or series of elementary functions. However, thanks
to several results, obtained mainly by Arnold, Poincaré, Laplace and Gauss, it is
possible to exploit geometrical methods to infer the main features of the solutions
of different kinds of Lagrange equations. Moreover, in some cases, it is possible
to perform qualitative analyses of these solutions, so as to be able to infer for
example:

– the so-called system’s attractors, i.e. those regions of the configuration
space of the system toward which its motion tends to “converge”;

– those regions of the configuration space in which the motion remains
confined;

– the effects on the trajectory of the motion due to different external actions
or variations of initial data.

We can also study Lagrange equations quantitatively, by using numerical meth-
ods. Indeed, the proof of the existence and uniqueness theorem for the solution
to differential problems, which is due to Cauchy, is a constructive demonstra-
tion: it is based on the formulation of an algorithm which makes it possible to
generate a sequence of functions converging to the solution. Moreover, and this
is very important in applications, it provides an estimate of the error introduced
when substituting an approximation to the exact solution. It is for this reason
that with the coming of modern digital calculators, which entails an increasing
computational capacity, the Lagrangian method is gaining even more importance
for the description of the time evolution of physical systems: once a Lagrangian
has been determined which is considered reliable for the description of a given
class of phenomena, it is possible to forecast the behavior of the system with
considerable accuracy and reliability. It is noteworthy that for non-dissipative
dynamical systems, i.e. for those systems in which the energy is conserved, it
is always possible to describe the dynamical evolution of the system in terms of
Euler–Lagrange equations. Being aware of this result, Laplace hailed the Euler–
Lagrange equations as “the equations of the Universe.” Indeed, following Dem-
ocritus, by considering the Universe as made up of a (huge but) finite number of
particles, in the hypothesis for which the first principle of thermodynamics holds,
it is possible to introduce an accurate enough model of the Universe by means
of a Lagrangian function defined in terms of a finite number of Lagrangian coor-
dinates. Laplace, driven by the necessity to furnish evidence for this conjecture,
developed his celestial mechanics that is able to describe, in a very accurate way,
the solar system’s behavior. Nevertheless, it is possible to furnish a Lagrangian
description also for non-conservative systems. To this end, the reader is encour-
aged to consider the following time-dependent Lagrangian function:
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L = exp(μt)

(
1

2
mẋ2 + 1

2
kx2

)
, (5.30)

of a system with only one degree of freedom, x, and to compute the corresponding
Euler–Lagrange equation. That equation will turn out to be one of a damped
harmonic oscillator: thus, the reader may begin to doubt the fact that Lagrangian
formalism can be used only when dealing with conservative systems.

• Let us compute explicitly the time derivative in Eq. (5.29):

∂2L

∂q̇∂q̇
q̈∗ + ∂2L

∂q∂q̇
q̇∗ + ∂2L

∂q̇∂t
− ∂L

∂q
= 0. (5.31)

Due to the condition (5.16) on the Hessian of the Lagrangian function, it is
possible to multiply for its inverse on the left. In this way, Eq. (5.31) can be
turned into normal form:

q̈∗ =
(
∂2L

∂q̇∂q̇

)−1 (
∂L

∂q
− ∂2L

∂q̇∂q
q̇∗ − ∂2L

∂q̇∂t

)
. (5.32)

By recasting Euler–Lagrange equations in normal form, we have ensured that
the existence and uniqueness theorem holds, once some initial (Cauchy) data are
fixed. Therefore, it is possible to conclude that the least action principle implies
that the mechanical determinism law holds: its initial Lagrangian coordinates and
velocities uniquely determine the evolution of the dynamical system.

5.2.3 Kinetic and Potential Energy in Constrained Multi-body Systems

In this section, an important result due to Hamilton (the so-called Hamilton principle)
will be discussed: for every finite-dimensional multi-body dynamical system which is
under the effects of conservative forces and which is subject to friction-free constraints,
a least action principle is equivalent to the cardinal equations of dynamics. We observe
that neglecting friction in engineering applications leads to underestimating the capabil-
ity to endure external loads. Moreover, note that Hamilton’s principle does not imply
that an action for non-conservative systems cannot be found (an example has been
provided in the previous subsection).

Let S be a dynamical system made of N constrained bodies with n degrees of free-
dom. Let us introduce the n-tuple of Lagrangian coordinates q so that the position of
each material point P of such a multi-body system is given by a relation like:

rP = rP (q, t) . (5.33)

This function r, which associates with any triple (P , q, t) the corresponding position
rP (q, t), is called the configuration function of the system S. By considering a motion
q(t) of S, it is possible to express the velocity field v(P , q, q̇, t) of the system in terms
of rP (q, t) by:

v(P , q, q̇, t) := d

dt
rP (q(t), t) = ∂rP (q(t), t)

∂t
+ ∂rP (q(t), t)

∂q
q̇. (5.34)
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Analogously, it is possible to express the acceleration field a(P , q, q̇, q̈, t) by means of
the configuration function rP (q, t) as:

a(P , q, q̇, q̈, t) : = d

dt
v(P , q, q̇, t)

= ∂rP (q(t), t)

∂q
q̈+ q̇T ∂2rP (q(t), t)

∂q2
q̇+ ∂2rP (q(t), t)

∂q∂t
q̇

+ ∂2rP (q(t), t)

∂t∂q
q̇+ ∂rP (q(t), t)

∂t2
.

(5.35)

A constraint for which a configuration q̄ such that

∂rP (q̄)

∂t
�= 0 (5.36)

exists, will be called a time dependent constraint. Let us now consider a configuration
q∗. We will define virtual displacements of S starting from q∗, using the following
functions:

δrP (q∗, δq, t) =
n∑

h=1

∂rP (q∗, t)
∂qh

δqh = ∂rP (q∗, t)
∂q

δq . (5.37)

Therefore, we will define the set of virtual displacements of S, around the configuration
q∗ as the set of displacement fields obtained by varying δq in (5.37). Note that these
displacement fields are obtained by varying the Lagrangian and by keeping fixed the
constraints at the instant t .

Let us consider a generic element Ci (i = 1,. . . ,N) of the multi-body system S and the
velocity field v(P , t). We define the kinetic energy of S as

T =
N∑

i=1

1

2

ˆ
Ci

v(P , t) · v(P , t) dmP , (5.38)

where dmP denotes the mass density of the point P . By replacing the velocity field in
the previous equation with its explicit expression, we get:

T = 1

2

N∑
i=1

ˆ
Ci

[
∂rP

∂qh

q̇h + ∂rP

∂t

]
·
[
∂rP

∂qk

q̇k + ∂rP

∂t

]
dmP . (5.39)

Since the Lagrangian velocity q̇ is independent of P , it is possible to express the kinetic
energy in Lagrangian form as

T = 1

2
ahk(q, t)q̇hq̇k + bh(q, t)q̇h + b0(q, t) , (5.40)

where:

ahk(q, t) :=
N∑

i=1

ˆ
Ci

(
∂rP

∂qh

· ∂rP

∂qk

)
dmP , (5.41)
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bh(q, t) :=
N∑

i=1

ˆ
Ci

(
∂rP

∂qh

)
· ∂rP

∂t
dmP , (5.42)

b0(q, t) := 1

2

N∑
i=1

ˆ
Ci

∂rP

∂t
· ∂rP

∂t
dmP . (5.43)

If we assume that constraints are independent of time and by denoting with A = ahk the
kinetic energy matrix, we can write Eq. (5.40) as

T = 1

2
q̇T Aq̇ = 1

2
ahk(q, t)q̇hq̇k , (5.44)

where we notice that

• due to the scalar product symmetry, A = AT ;

• in general, A will depend on the system configuration;

• A is positive definite.

Moreover, from Eq. (5.44) we can deduce that, in order to determine the expression of
the kinetic energy in Lagrangian form, one has to furnish:

• the kinematics and the geometrical structure of the system in terms of the config-
uration functions;

• the bodies’ mass distribution of S.

Let us state the following theorem:

theorem 5.3 Kinetic energy theorem. The kinetic energy’s first variation, relative to
an admissible variation of the motion δq(t) and valued for the motion q∗(t), is equal to
the work done by inertial forces on the virtual displacement δrP (q∗, δq(t), t). Namely:

δ

(ˆ t1

t0

T (q(t), q̇(t), t) dt

) ∣∣∣∣
q∗

=
ˆ t1

t0

(
N∑

i=1

ˆ
Ci

−a(P , q∗, q̇∗, t) · δrP (q∗, δq(t), t) dmP

)
dt .

(5.45)

Proof Let us begin by applying the Euler–Lagrange theorem to compute the kinetic
energy’s first variation:

δ

(ˆ t1

t0

T (q(t), q̇(t), t)dt

)∣∣∣∣
q∗
=
ˆ t1

t0

[(
∂T

∂q
− d

dt

(
∂T

∂q̇

))
q∗
· δq(t)

]
dt . (5.46)

Subsequently, let us consider the following equalities obtained by definitions (5.38)
and (5.34)

∂T

∂q
=

N∑
i=1

ˆ
Ci

∂v(P , t)

∂q
· v(P , t)dmP , (5.47)

∂T

∂q̇
=

N∑
i=1

ˆ
Ci

∂v(P , t)

∂q̇
· v(P , t)dmP =

N∑
i=1

ˆ
Ci

∂ rP (q(t), t)

∂ q
· v(P , t)dmP , (5.48)
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d

dt

(
∂T

∂q̇

)
=

N∑
i=1

ˆ
Ci

∂rP (q(t), t)

∂ q
· a(P , t)dmP +

N∑
i=1

ˆ
Ci

∂vP (q(t), t)

∂ q
· v(P , t)dmP ,

(5.49)

∂T

∂q
− d

dt

(
∂T

∂q̇

)
=

N∑
i=1

ˆ
Ci

−a(P , t) · ∂ rP (q(t), t)

∂ q
dmP . (5.50)

To get (5.45) it is now sufficient to multiply both sides of (5.50) by δq(t), to integrate
on the interval [t0, t1] and to recall (5.37).

Let us now introduce a system of forces �, whose density is dfP (q∗, q̇∗, t), which act,
at instant t , on a generic point P of S. The system of forces � does work on the virtual
displacement δrP (q∗, δq, t) which is equal to

L (�) =
N∑

i=1

ˆ
Ci

dfP (q∗, q̇∗, t) · δrP (q∗, δq, t) dV =: Q(q∗, q̇∗, t) · δq , (5.51)

where we have indicated with Q(q∗, q̇∗, t) the vector of the Lagrangian components of
�. In components, it reads:

Qh(q∗, q̇∗, t) :=
N∑

i=1

ˆ
Ci

dfP (q∗, q̇∗, t) · ∂rP (q∗, t)
∂qh

dV . (5.52)

If the Lagrangian components of a system of forces � do not depend on the Lagrangian
velocities and if it is possible to find a potential energy, i.e. a scalar function U (q∗, t)
such that

Qh(q∗, t) = −∂U (q∗, t)
∂qh

, (5.53)

then the system is said to be conservative. After having introduced all the preparatory
definitions, we are ready to state Hamilton’s theorem:

theorem 5.4 On the existence of an action for a multi-body finite-dimensional
constrained system. Given a multi-body finite-dimensional system, in the presence of
ideal constraints and under the action of conservative forces, the principle of stationary
action is equivalent to Kirchhoff’s law and cardinal equations of dynamics, and the
Lagrangian function is defined as the difference between kinetic energy and potential
energy.

Proof In the full general case, the proof of this theorem is quite cumbersome in the
context of Noll’s axiomatic framework,5 which we have temporarily adopted. For the
sake of clarity, we discuss the case of a dynamical system S, made up of N bodies
Ci (i = 1, . . . , N ) that undergo only rigid motions. Let us consider the function q∗(t)
which describes the motion of S in a time interval [t0, t1], once the initial configuration

5 In this axiomatic framework, the force is considered as a primitive quantity, while the power is a derived
concept.
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and velocity of the system have been fixed. For each body Ci , the cardinal equations of
dynamics hold: {

0 = R∗i = R
(a)
i + R

(v)
i + R

(m)
i

0 = M∗
i = M

(a)
i +M

(v)
i +M

(m)
i ,

(5.54)

where R∗i and M∗
i represent the total force and the total moment applied to Ci during

the motion q∗(t), respectively. In particular, the terms R
(m)
i and M

(m)
i describe the

contributions given by inertial forces, R
(a)
i and M

(a)
i are the resultant force and moment

due to the active forces, and R
(v)
i and M

(v)
i are related to constrained forces and can be

determined by the Kirchhoff’s postulate. At instant t , let us consider an admissible vari-
ation δq(t) of the Lagrangian coordinates, compatible with the constraints, around q∗

and the associated virtual displacement field δrP (q∗(t), δq(t), t). Since we are limiting
the proof only to rigid motion, such a virtual displacement will result in an infinitesimal
rotation δϕi(q∗(t), δq(t), t) for each body Ci . If we consider now a material point Oi

of Ci and its displacement δrOi
(q∗(t), δq(t), t), we can compute the following scalar

product: {
0 = (R(a)

i + R
(v)
i + R

(m)
i ) · δrOi

(q∗(t), δq(t), t)

0 = (M (a)
i +M

(v)
i +M

(m)
i ) · δϕi(q∗(t), δq(t), t).

(5.55)

By considering the sum over all the bodies and by recalling the expression for the work
done on a rigid displacement, (5.51), Eq. (5.55) reads

L(a) + L(v) + L(m) = 0 , (5.56)

where L(a), L(v), and L(m) are the work done by active forces on the virtual displacement
field δrP (q∗, δq(t), t) of S, by constraint reactions, and by inertial forces, respectively.
Since we are in the presence of ideal constraints, we can set L(v) = 0 and write the
symbolic D’Alembert’s relation as

L(a) + L(m) = 0 , (5.57)

which can be read as: the work done by inertial forces is equal to the work done by active
forces on virtual displacement, taken with opposite sign. Moreover, if we assume that
the system is at rest in a configuration q∗(t) = q̄, inertial forces vanish and Eq. (5.57)
reduces to:

L(a) = 0 . (5.58)

This last relation can be rephrased as: in the presence of ideal constraints, the work done
by a system of active forces on a virtual displacement is zero when starting from an
equilibrium condition.6 The theorem is proved if we consider the following Lagrangian
function:

L (q, q̇, t) = T (q, q̇, t)− U (q, t) . (5.59)

6 In his On the Equilibrium, Archimedes repeatedly uses Eq. (5.58), in particular to deduce equilibrium laws
for levers.
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Indeed, by means of Eqs. (5.51) and (5.53), the first variation of the action associated
with this Lagrangian function reads:

δA
∣∣
q∗=

ˆ t1

t0

(
L(a) + L(m)

)
dt . (5.60)

5.2.4 Motions about a Stable Equilibrium Configuration

In this subsection, we will analyze the useful subclass of motions which are constant
functions with respect to the time variable. The system considered for these motions will
remain in the same configuration for every instant of time. D’Alembert and Lagrange
explicitly established that the laws of mechanics could be formulated to give a unified
description of both static and dynamic phenomena, where the latter are those phenomena
in which the relevant system changes its configuration in time. As already stressed in
the introduction of this chapter, after the foundation of analytic mechanics the division
of mechanics into statics and dynamics does not make sense any more, at least at the
axiomatic formulation level.

Once an external action is assigned, some equilibrium configurations could exist. If
the system has zero velocity in this configuration, it will remain in such a a configuration
indefinitely in time. It is possible to distinguish equilibrium configurations as “stable”
or “unstable”: in particular, we will say that an equilibrium configuration is stable if
small variations of the equilibrium configuration of the system correspond to a motion
of the system confined within a small neighborhood of the equilibrium configuration.
Dirichlet, in order to characterize stable equilibrium configurations, conjectured that the
positions of stable equilibrium were minima for the potential energy and vice versa.

To sketch a satisfactory proof of this conjecture, we need to introduce sound defi-
nitions for equilibrium positions and their stability. For simplicity we will restrict the
analysis to time independent Lagrangian functions:

L : q �−→ T (q, q̇)− U (q) . (5.61)

A configuration q0 such that the motion q : t �→ q0 is a solution of the Euler–Lagrange
equations is said to be an equilibrium configuration. More precisely, one can prove the
following proposition:

proposition 5.2 A configuration q0 is an equilibrium configuration if and only if

∂U

∂q

∣∣∣∣
q0

= 0 . (5.62)

Proof Proof of the direction⇒. Since

∂U

∂q̇
= 0 ⇒ d

dt

(
∂L

∂q̇

)
= d

dt

(
∂T

∂q̇

)
,

d

dt

(
∂L

∂q̇

)∣∣∣∣
q0

− ∂L

∂q

∣∣∣∣
q0

= 0, (5.63)



Lagrangian Discrete Models: Applications to Metamaterials 213

we have: [
d

dt

(
∂T

∂q̇

)
− ∂T

∂q
+ ∂U

∂q

]∣∣∣∣
q0

= 0. (5.64)

Recalling (5.44), we get:

d

dt

(
∂T

∂q̇h

)∣∣∣∣
q(t)=q0

=
n∑

k=1

n∑
l=1

∂ahk

∂ql

q̇l q̇k +
n∑

k=1
ahk (q) q̈k

∣∣∣∣
q(t)=q0

= 0

∂T

∂qr

∣∣∣∣
q(t)=q0

=
n∑

h=1

n∑
k=1

∂ ahk

∂ qr

q̇hq̇

∣∣∣∣
q(t)=q0

= 0.

(5.65)

Hence, if q0 is an equilibrium position, (5.64) implies:

∂U

∂q

∣∣∣∣
q0

= 0. (5.66)

Proof of the direction ⇐. If ∂U
∂q = 0, Euler–Lagrange equations are immediately ful-

filled by q(t) = q0 because, as was seen before, d
dt

(
∂T
∂q̇

)
and ∂T

∂q are equal to zero.

proposition 5.3 The configuration q∗ is said to be a Lyapunov stable equilibrium
configuration if:

∀ε >0, ∃δp(ε, q∗), δv(ε, q∗) ∈ R
+ : ‖ q0 − q∗ ‖< δp(ε, q∗), ‖ q̇0 ‖< δv(ε, q∗)

�⇒ ‖ q(t , q0, q̇0)− q∗ ‖< ε, ‖ q̇(t , q0, q̇0) ‖< d∗ε, ∀t ∈ R
+ ,

(5.67)

where we have indicated with q(t , q0, q̇0) the motion of S associated with the initial
data q0 and q̇0, while the dimensional factor d∗ depends on the system S and on the
configuration q∗. We will denote stability coefficients for S by the coefficients δp(ε, q∗)
and δv(ε, q∗).

Although this definition may seem too abstract, it is strongly motivated by applications
and allows a precise formulation of important engineering problems. For instance, let
us consider the equilibrium configuration e of a reticular structure S which is subject to
an operating load. Let us denote with δ̄p and δ̄v the maximum expected displacements
and impulses induced by a further load7 applied to S. Moreover, let ε be a measure
of the maximum tolerable displacement. In order for S to be safe, we require that e is
a stable equilibrium configuration in the sense of the Lyapunov definition. Namely, it
is required that, at least for the considered perturbation, S does not go “too far” from
e. Furthermore, a safe design will require also a quantitative estimate of the values of
stability coefficients δp(ε, q∗) and δv(ε, q∗), in such a way as to verify the supplementary
condition

δ̄p ≤ αδp(ε, q∗), δ̄v ≤ αδv(ε, q∗), (5.68)

7 We consider, for the time being, only stationary loads applied starting from a fixed instant t0 or impulses
applied at the instant t0 as well.
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where α < 1 is a suitable safety coefficient. Finally, let us introduce another stability
criterion formulated by Dirichlet:

proposition 5.4 Dirichlet’s stability criterion. q∗ is a stable equilibrium configura-
tion if q∗ is a minimum point for U .

The converse of this stability criterion is not easy to demonstrate. However, it is possible
to prove that

proposition 5.5 q∗ is a minimum point for U if q∗ is a stable equilibrium configu-
ration and U ∈ C3.

5.2.5 Resonance Phenomena and Linearization

Ensuring that a given structure S is in a stable equilibrium configuration under operating
conditions and that its stability coefficients verify (5.68) is not sufficient to exclude that a
given periodic perturbation, even of small amplitude, could imperil its stability. Indeed,
it has been experimentally verified that, if the perturbation frequency equals one of
the natural oscillation frequencies of the system which it is applied to, then, indepen-
dently of its amplitude, resonance phenomena occur. Such phenomena, which lead to an
unbounded growth in time of the amplitude of oscillations induced by the perturbation,
are often really dangerous: as an example, consider the unforeseen oscillations induced
on the Tacoma bridge by the winds blowing in the throat below the bridge.

In order to address this problem, it is convenient to assume that the perturbations
around the equilibrium position are small. More formally, there exists a neighborhood
of a stable equilibrium configuration, characterized by a diameter ε, in which all the
trajectories of such motions are contained. Moreover, we set a bound from above on the
Lagrangian velocity by requiring:

‖ q̇(t , q0, q̇0) ‖< η . (5.69)

Mathematically, we are allowed to consider an approximation of the Euler–Lagrange
equations’ solutions by neglecting all the O(η2) terms. The introduction of the dimen-
sionless parameter η, which ensures that the intensity of the perturbation can be con-
trolled, is the first step of a linearization procedure which gives rise to the following
form of the Euler–Lagrange equations, namely the Cauchy problem:⎧⎨

⎩
d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= ηQ0(t)+Q1(t)(q− q∗)+Q2(t)q̇ ,

q(t0) = q∗ + ηp0, q̇(t0) = ηṗ0,
(5.70)

where in the r.h.s. of the first of Eqs. (5.70) Q0 is the vector of Lagrangian components
of the perturbation applied to the system and Q1(t) and Q2(t) are linear maps having as
arguments (q − q∗) and q̇, respectively. We have enough ingredients to formalize the
hypothesis of small motions of a Lagrangian system. In particular, we will assume that
the following expressions hold for the solution q(·) of the system (5.70):
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q(t) = q∗ + ηp(t , p0, ṗ0, Qi(·))+O(η2) ,

q̇(t) = ηṗ(t , p0, ṗ0, Qi(·))+O(η2) ,

q̈(t) = ηp̈(t , p0, ṗ0, Qi(·))+O(η2) ,

(5.71)

where i = 0, 1, 2. Therefore, the following proposition holds:

proposition 5.6 Equation of small motions around a stable equilibrium position.
The differential equation in (5.70) can be written in terms of p(t , p0, ṗ0, Qi(·)) as

K∗p+ A∗p̈ = Q0(t)+ Q1(t)p+ Q2(t)ṗ , (5.72)

where the matrix A∗ describes the kinetic energy valued in q∗, and the matrix K∗ is the
stiffness of the system S and can be related to the potential energy by

K∗
hk =

∂2U

∂qh∂qk

∣∣∣∣
q∗

. (5.73)

Moreover, in order to verify the second of Eqs. (5.70), the following relations hold:

p(t0, p0, ṗ0, Qi(·)) = p0, ṗ(t0, p0, ṗ0, Qi(·) = ṗ0 . (5.74)

Proof Since q∗ is an equilibrium configuration and performing the Taylor series
expansion with initial point q∗ where it is required, we have the equalities:

∂U (q)

∂qh

= ∂U

∂qh

∣∣∣∣
q∗
+

n∑
k=1

∂2U

∂qh∂qk

∣∣∣∣
q∗

(
qk − q∗k

)+O(η2) = η

n∑
k=1

K∗
hkpk +O(η2),

(5.75)

∂T (q)

∂qr

= ∂

∂qr

(
1

2

n∑
h=1

n∑
k=1

ahk(q)q̇hq̇k

)
= 1

2

n∑
h=1

n∑
k=1

∂ahk(q)

∂qr

q̇hq̇k +O(η2),

(5.76)

ahk(q) = ahk(q∗)+
n∑

j=1

∂ahk

∂qj

∣∣∣∣
q∗

(
qj − q∗j

)
+O(η2) ⇒ A(q) = A∗ +O(η),

(5.77)

d

dt

(
∂T

∂q̇

)
= d

dt

[
A(q)q̇

] = A(q)q̈+ q̇T ∂A(q)

∂q
q̇ = ηA∗p̈+O(η2). (5.78)

Recalling (5.61), substituting the expansions found in the right-hand side of the first
equation in (5.70) and considering the linear (in η) coefficient, we get (5.72).8

8 The computation of
∂T

∂q̇
is simple (we recall that ahk(q) is symmetric):

∂T

∂q̇l
= 1

2

n∑
h,k=1

ahk(q)
∂

∂q̇l
(q̇hq̇k) = 1

2

n∑
h,k=1

ahk(q)

(
∂q̇h

∂q̇l
q̇k + q̇h

∂q̇k

∂q̇l

)

= 1

2

n∑
h,k=1

ahk(q) (δhl q̇k + q̇hδkl ) =
1

2

n∑
k=1

(alk(q)q̇k + ahl (q)q̇h) =
n∑

k=1

alk(q)q̇k .
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Clearly, in the above proposition we did not prove (and it is not a trivial task) that the
solution to the problem (5.70), can be well approximated by the solution of (5.72) for
small values of η.

Note that one has to require that q∗ is a stable equilibrium configuration in order
to prove that the approximating function converges to the exact solution. The main
reason is that, otherwise, even a small perturbation of the applied forces or of the initial
data may make this analysis meaningless by moving the configuration of the system
indefinitely far away from q∗ the configuration of the system.

The linear system of equations (5.72) is an n-dimensional generalization of the
harmonic oscillator equation. We will show now that, by requiring q∗ to be a strict
minimum point for the potential energy, Q1(t) to be symmetric, positive definite,
independent of time, and Q2(t) = 0, to solve Eq. (5.72) we have to solve a set of n

uncoupled harmonic oscillators.
To simplify the notation, let us indicate

Diag{λ1,λ2, . . . ,λn} := Diag{λi} =

⎛
⎜⎜⎜⎝
λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

⎞
⎟⎟⎟⎠ , (5.79)

where {λ1,λ2, . . . ,λn} is an ntuple of scalar quantities. Let us observe that:

1. the matrix kinetic energy A∗ valued in q∗ is positive and, therefore, invertible;
2. q∗ being a strict minimum of U , the matrix K∗ is symmetric and positive;
3. the following proposition holds:

proposition 5.7 A real matrix C is diagonalizable if it can be written as the
product of two symmetric real matrices A and B−1, where is B positive definite.

Proof Positive definiteness of B implies the existence of an orthogonal matrix R
and of ntuple numbers

{
β2

i

}
such that

B = RT
[
Diag

{
β2

i

}]
R.

To further lighten notation, we use the following definitions

D2 := Diag
{
β2

i

}
, D := Diag {βi} .

As a consequence, we have

A− λB = RD
(

D−1RTARD−1 − λI
)

DRT,

(I being the identity matrix). By computing the determinant, we get

det (A− λB) = (det R)2 (det D)2 det (P− λI) ,
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where we have introduced the symmetric matrix P := D−1RTARD−1. Since

(det R)2 = 1, (det D)2 =
n∏

i=1

β2
i , (5.80)

the roots of the characteristic polynomial det (A− λB) coincide with those of
the characteristic polynomial det (P− λI) . Since the matrix B is invertible, those
roots coincide also with those of the characteristic polynomial det

(
B−1A− λI

)
.

Using again the theorem on the diagonalization of symmetric matrices, we infer
that there exist exactly n real eigenvalues λi for the matrix P and each one of
them is associated with an eigenvector zi , in such a way that the set {zi} is a basis.
Since we have

Pzi =
(

D−1RTARD−1
)

zi = λizi ,

it is easy to verify that

A
(

RD−1zi

)
= λiRDzi = λiRD

(
DRTRD−1

)
zi = λiB

(
RD−1zi

)
. (5.81)

Therefore, we can conclude that the set {λi} is the set of eigenvalues of the
matrix C := B−1A and that the eigenvectors associated with them are the vectors
xi := RD−1zi , respectively. Note that, the vector zi being orthogonal and RD−1

a nonsingular matrix, the set {xi} is a basis. Clearly, the matrix X, defined as the
matrix whose columns are the eigenvectors xi , is nonsingular and it diagonalizes
C. Indeed, by (5.81), it is straightforward:

X−1CX = Diag {λi} .

In general, the matrix X is not orthogonal. Indeed, by the chain of equalities
(where the symbol “·” denotes the Euclidean inner product in IRn)

0 = zi · zj =
(

DRTxi

)
·
(

DRTxj

)
= xi · RD2RTxj = xi · Bxj ,

we deduce that the vectors of the basis {xi} are orthogonal with respect to the
inner product defined by

(x, y) = x · By.

Finally, since the following equalities hold

Axi = λiBxi ⇒ xi · Axi = λixi · Bxi , (5.82)

we notice that the function A is positive definite and, hence, all its eigenvalues λi

are positive.

Then, if we multiply Eq. (5.72) from the left by (A∗)−1, we get

p̈ = −(A∗)−1(K∗ +Q1)p+ (A∗)−1(Q0(t)+Q2(t)ṗ), (5.83)

which is in normal form. Let us denote C := (A∗)−1(Q1 + K∗), and let us call P the
matrix which diagonalizes C, i.e. P−1CP = �, where � = Diag{λi} is a diagonal
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matrix. We define the system of modal coordinates for C as the system obtained by the
following transformation:

ζ = P−1p . (5.84)

The existence of such a system of coordinates is ensured by the previous proposition.
Indeed, the entries of � are the eigenvalues of C, and the columns ui of P are the
corresponding eigenvectors. We note that C being positive definite, it has all positive
eigenvalues. In the polar coordinate system, Eq. (5.83) can be recast as

ζ̈ = −P−1(A∗)−1(K∗ +Q1)Pζ + P−1(A∗)−1 (Q0(t)+Q2(t)Pζ̇
)

, (5.85)

that, when Q2(t) = 0, gives rise to n uncoupled equations

ζ̈i = −λiζi + fi(t) , (5.86)

where fi(t) represents the vector P−1(A∗)−1Q0(t) components, which must be flanked
with the initial data

P−1p0 = ζ(t0), P−1ṗ0 = Pζ̇(t0) . (5.87)

Hence, the eigenvectors of C will form the column of the matrix P and the pulsations of
the set of harmonic oscillator (5.86) can be expressed in terms of its eigenvalues λi as√

λ1, . . . ,
√
λn , (5.88)

and are called natural pulsations of the system (5.83). The resulting solutions, written
in terms of the modal coordinates, can be recast in terms of p(t) by means of Eq. (5.84).
When a frequency related to one of the λi appears in the Fourier transform of fi(t),
both equations (5.86) show resonance phenomena: therefore, even for small (w.r.t. the
parameter η) amplitude and if it acts for a sufficient time, the forcing term Q0(t) will
give rise to indefinitely large oscillations.

Let us end this section by remarking that, during the design phase of a structure which
is subject to stationary loads, one should ensure that:

• it is in stable equilibrium configuration under operating conditions;

• the expected amplitude of the perturbation of the loads is sufficiently small, so
that one can guarantee the effectiveness of the applied constraints;

• its natural frequencies are far from the expected frequencies of the perturbation.

5.3 Continuous and Discrete Modeling in Modern Mechanics

As anticipated in the previous section, it is possible to extend the aforementioned meth-
ods to continuous systems, namely systems described in terms of an infinite number
of Lagrangian coordinates. A natural example is the description of the deformation of
a material body which is assumed to be continuously distributed in a certain region of
space. Roughly speaking, this assumption can be justified only if the description of the
phenomenon is made “from far away enough” or, more rigorously, if the length-scale
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of the phenomenon which we want to describe is larger than the (intrinsic) discrete
nature of the body. Historically, from the beginning of the nineteenth century, continuum
mechanics was probably developed as a powerful computational tool. Indeed, an “atom-
istic” (and in principle highly accurate) description of a complex system will often give
rise to a huge number of (ordinary differential) equations of motion which, at that time,
would need more than one life of the universe to be solved. On the other hand, one of
the main advantages of a continuous description is that it furnishes a small set of partial
differential equations which (hopefully) may be efficiently solved by using the tools
of mathematical analysis. Within this paradigm, physics, mathematics, and engineering
science were able to produce astonishing results, enhancing the technological possibili-
ties open to humankind. However, by looking for the mathematical description of more
complex systems, some limits of continuum modeling started to appear, mainly due to
the limitations on solutions in a closed form (i.e. as combinations of known functions).
Actually, the subsequent technological advancements were possible mainly thanks to
the support of the (discrete) numerical methods which the Von Neumann machines were
able to perform. Discrete models again became a useful tool.

The recent development of the field of metamaterials has again fueled interest in the
relationship between continuous and discrete modeling. A metamaterial9 is a dynam-
ical system engineered to show exotic behaviors. It is characterized by a multi-scale
description given in terms of (at least) two different length-scales: one which character-
izes a (often periodic) discrete microstructure and one which describes its macroscopic
(continuous) behavior. Its unusual macroscopic behavior is originated by the particular
arrangement of the microstructure and, mathematically, it can be forecast by means
of the so-called homogenization procedures (see [78–84] for relevant examples) which
relate the behavior of the microstructure, described in terms of a discrete Lagrangian
system, to the macroscopic description of the metamaterial, given in terms of a infinite
dimensional Lagrangian system. Usually, these procedures are based on the following
steps:

1. A discrete Lagrangian model is introduced to describe the microstructure of the
metamaterial. It amounts to choosing a finite set of suitable Lagrangian coordi-
nates (see the previous section);

2. By applying the principle of virtual work, the variation of a suitable energy func-
tional is performed;

3. Suitable macroscopic Lagrangian coordinates describing the continuous model
have to be introduced;

4. A micro–macro correspondence between the Lagrangian coordinates of the
microstructure and of the continuous model has to be introduced;10

5. By assuming the equivalence between microscopic and macroscopic virtual
works, the constitutive equations given in terms of the macroscopic Lagrangian
coordinates are obtained.

9 In this work, we refer to the so-called mechanical metamaterials, namely those metamaterials
characterized by a microstructure made of mechanical elements like springs, bars, beams, pivots, etc.

10 This step is known as Piola’s ansatz.
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Usually, since the continuous models arising from a microstructure often have a high
level of complexity, it is not possible to solve the associated Euler–Lagrange equations
by means of the tools of mathematical analysis, i.e. it is not possible to find a closed form
of the solution of such partial differential equations. One of the main reasons is that, for
partial differential equations, existence and uniqueness cannot be investigated by means
of general theorems like Picard’s theorem for ordinary differential equations. Therefore,
the solutions are sought by means of numerical tools, which necessarily require a new
discretization of the problem. This last step can hide some dangers. Indeed, very often,
discrete models resulting by applying the finite element method (FEM) or finite differ-
ence method (FDM) to the homogenized model are able to contain only partially the
information about the underlying microstructure. The main risk of such a loss of control
is that it may induce the modeler to misunderstand the results of the discretization.

A natural question, therefore, arises: is the homogenization step needed? If we look
at the homogenized continuum model of a complex microstructure as a tool to forecast
the behavior of the system, it is clear that very often it is not able to provide us with
any solution. Moreover, it requires an additional step (FEM or FDM) which may be (at
least partially) irrespective of the actual discrete nature of the system. Of course, on the
other hand, it is not computationally convenient to apply numerical methods directly at
the level of the microstructure.

Here we review some approaches which start ab initio with a judiciously chosen
discrete model, inspired by the mechanical features of the microstructure, which can
be described in terms of a reasonable (from the computational point of view) number
of Lagrangian coordinates. This mesoscopic model may produce efficient and robust
algorithms, able to forecast equilibrium configurations of complex mechanical systems
under large deformations. Indeed, the theory of discrete Lagrangian systems that we
have introduced in the previous section provides us with well-posed ordinary differential
equation problems which can be efficiently solved by means of numerical methods.

In the next sections we will discuss two successful examples of such a proposed
paradigm: the Piola–Hencky discrete model for pantographic metamaterials and the
Piola–Hencky model for the three-dimensional Elastica.

5.4 Hencky-Type Model for Pantographic Metamaterials

In this section, we present a Lagrangian discrete model for a pantographic metamaterial
(more information can be found in [86–90, 93]). In particular, we analyze the case of a
planar pantographic sheet, made of a lattice consisting of two arrays of fibers, oriented
at angles π/4, π/3, and π/6 with respect to the horizontal axis, where the longer side of
the pantograph lies (see Fig. 5.1).

The two arrays lie on different (but relatively close) planes and they are connected in
their intersection points by means of a set of pivots (see Fig. 5.2).

In his Ph.D thesis, Hencky [91] proposed a discrete model for Elasticae in terms of
rotational springs and rigid bars. Following the spirit of his approach and the discussion
of the previous section, the discrete Lagrangian models that we are going to present
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Figure 5.1 A pantographic lattice for fibers oriented at angle π/4.

Figure 5.2 The microstructure of a pantographic structure.

are directly inspired by the pantograph’s microstructure. We firstly discuss the models
for different arrangements of the microstructure, then we present numerical and exper-
imental results aiming to validate the models. In the next section, in contrast, another
example of the Hencky model for three-dimensional Elasticae will be presented.

5.4.1 Discrete Hencky-type Model for a Planar Pantographic Sheet

In the first model that we present, we consider a pantographic sheet as a rectangular
lattice made of square cells. The cells, whose side length is ε, are formed by two
orthogonal arrays of fibers. We will call array 1 and array 2 the arrays forming a π/4
and a −π/4 angle with respect to the (horizontal) x1 axis (see Fig. 5.1), respectively.
The discrete Lagrangian system that we want to introduce to describe the pantographic
sheet is made up of a finite number N of material particles occupying the intersection
points of the two arrays of fibers. These particles are linked one to another by means of
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Figure 5.3 Discrete Hencky-type mechanical model for the pantographic lattice.

extensional and rotational springs, whose arrangement is sketched in Fig. 5.3. Note that
this arrangement allows both pair-wise and triple-particle interactions. With respect to
a reference configuration, for instance one can consider the pantographic sheet without
any imposed displacement or any force acting on it,11 the position of the ith particle is
indicated by a vector Pi . The Lagrangian coordinates of this system are, therefore, the
actual positions of the particles after a deformation, which we denote with the lowercase
letter p. Hence, if we limit the kinematics of the system to planar motions, one just needs
to introduce 2N Lagrangian coordinates to describe the system.

Once the kinematics of the system has been defined, according to the second section
of this chapter, we have to find a Lagrangian function for this mechanical system such
that, by imposing that the first variation of the associated functional vanishes, one can
obtain the equilibrium configurations of the system. Since we are interested in equilib-
rium configurations, or in other words, we want to study the statics of the structure,12

the Lagrangian function will contain only the potential energy part, i.e. the contribution
associated with the relevant deformation. As we have already discussed in Section 5.2,
this choice is not unique. We will show that our conjecture on the analytical form of the
deformation energies will also lead to accurate predictions of the structural response of
the pantographic sheet in the presence of large deformations.

Our ansatz is that the total energy of the pantographic sheet can be expressed as

W (d) = Wint − Lext =
∑

e

(
w0 + w1 + w2 + w3

)− Lext , (5.89)

where d is the vector collecting all the particles’ displacements, e is an index labelling
the springs of the system and ranging over all of them (we refer to Fig. 5.3 and Fig. 5.4),
Lext is the work done by external loads and

11 Although this is a customary choice, it not mandatory to select such a reference configuration. In
Section 5.5 we discuss the case of a generic curved reference configuration of a 3D beam.

12 In Section 5.5 we discuss an example of dynamical evolution of a 3D beam discussed in terms of a
Hencky-type model.
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Figure 5.4 The extensional, bending and shear springs kinematics.

• w0 is the deformation energy for axial springs, defined as

w0 = 1

2
r0(‖ pj − pi ‖ −ε)2 , (5.90)

where pi and pj are the actual positions of the particles i and j , respectively, and
r0 is the rigidity of the extensional spring;

• w1,2 are the deformation energies for bending springs along array 1 and 2 respec-
tively. They read

w1,2 = r1,2(cos γ1,2 + 1) , (5.91)

where the angle γ can be written in terms of the Lagrangian coordinates as

cosγ1,2 =
‖ pj1,2 − pi1,2 ‖2 + ‖ pk1,2 − pj1,2 ‖2 − ‖ pk1,2 − pi1,2 ‖2

2 ‖ pj1,2 − pi1,2 ‖2‖ pk1,2 − pj1,2 ‖2
, (5.92)

r1,2 are the rigidities of the rotational springs involving array 1 and 2, respectively,
and pi1,2 , pj1,2 , and pk1,2 are the actual positions of three particles aligned along
array 1 or 2;

• w3 is the deformation energy for shear springs, defined as

w3 = 1

2
r3

(
γ3 − π

2

)2
, (5.93)

where

cos γ3 = ‖ pj1 − pk2 ‖2 + ‖ pk1 − pj1 ‖2 − ‖ pk1 − pk2 ‖2

2 ‖ pj1 − pk2 ‖2‖ pk1 − pj1 ‖2
, (5.94)

and r3 is the rigidity of the rotational springs which connect the two arrays, and
pk1 , pk2 , and pj1 are the Lagrangian coordinates of the particles involved. One
such shear spring will appear in all the quadrants of Fig. 5.3.

Note that the last two deformation energies involve three-particle interactions. More-
over, if we impose certain displacements on some particles, the associated deformation
energies will need the specification of suitable boundary conditions. More specifically,
if we assume that the short sides of the lattice are fixed to two rigid bodies and the
bending springs are connected with material segments of these bodies, then from the
previous expressions we can deduce the conditions required as
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Figure 5.5 Discrete Hencky-type mechanical model for the pantographic lattice in the case of
non-orthogonal fibers.

pi1,2 = Pi1,2 + Ri1,2 , (5.95)

if (see Fig. 5.4) with respect to the constrained j particle, there is no preceding particle
i in the interior of the lattice, or as

pk1,2 = Pk1,2 + Rk1,2 , (5.96)

if there is no subsequent particle k in the interior of the lattice with respect to the
constrained particle j , and we have indicated the corresponding rigid displacements
by Ri1,2 and Rk1,2 , respectively.

It is possible to generalize the previous model to the case of non-orthogonal fibers
by distinguishing the springs along the directions α1 and α2 = π − α1 depicted in
Fig. 5.5. In the orthogonal case, these two angles reduce to ±π/4 leading again to the
expression (5.89), while in this more general case the total energy reads:13

W (d) = 1

2

∑
i,j

a
(α1)
i,j (‖ pi+1,j − pi,j ‖ −ε)2

+
∑
i,j

a
(α2)
i,j (‖ pi,j+1 − pi,j ‖ −ε)2

+
∑
i,j

b
(α1)
i,j

(
cosβ(α1)

i,j + 1
)

+
∑
i,j

b
(α2)
i,j

(
cosβ(α2)

i,j + 1
)

+ 1

2

∑
q

∑
i,j

s
(q)
i,j

(
θ

(q)
i,j − θ̄

(q)
i,j

)2
,

(5.97)

13 The names of the rigidities have been modified with respect to Eq. (5.89) in order to lighten the notation.
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Figure 5.6 The extensional, bending and shear spring kinematics in the case of non-orthogonal
fibers.

where a
(αm)
i,j , b

(αm)
i,j , and s

(q)
i,j (m = 1, 2) are the rigidities of the axial, bending, and shear

springs respectively, which connect the particles i and j . The index q runs over the four
quadrants around the particle Pi,j . Finally, the angles β

(αm)
i,j (m = 1, 2), θ(q)

i,j , and θ̄
(q)
i,j

are the angles shown in Fig. 5.6.
Since the discrete Lagrangian model for pantographic sheet has been introduced, it is

natural to compare it with the corresponding (homogenized) continuum model. In [92]
it is shown that, once a regular field χ called placement has been introduced satisfying
the property14

χ(Pi,j ) = pi,j , (5.98)

it is possible to define the following Lagrangian energy:

W (χ) = 1

2

ˆ
�

∑
αm

A(αm)(‖ Fdαm ‖ −1)2 d�

+ 1

2

ˆ
�

∑
αm

B(αm)
(∇F|dαm ⊗ dαm · ∇F|dαm ⊗ dαm

‖ Fdαm ‖2

−
(

Fdαm

‖ Fdαm ‖
· ∇F|dαm ⊗ dαm

‖ Fdαm ‖
)2)

d�

+ 1

2

ˆ
�

S

(
arccos

(
Fdα1

‖ Fdα1 ‖
· Fdα2

‖ Fdα2 ‖
)
− θ̄

)2

d� ,

(5.99)

where the gradient of the placement field has been indicated by F = ∇χ, and
the stiffness parameters A(αm), B(αm), and S are related to the spring rigidities of
Eq. (5.97). Note that since in the expression of the energy (5.99) all the components
of the gradient of F appear, one refers to this model as a second gradient (of the
displacement field) theory [93–95]. By comparing the different contributions of the
energies (5.97) and (5.99) versus non-dimensional displacements (normalized on the
longest side of the pantographic sheet) as shown in Fig. 5.7, it is apparent that they

14 This is the aforementioned Piola’s Ansatz.
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Figure 5.7 Strain energy vs normalized displacement. Discrete model is indicated with
dashed/dotted lines, the second gradient model with continuous lines.

show a very similar behavior. In Section 5.4.3, we compare these two models with
experimental measurements.

5.4.2 The Solution Algorithm

Once the Lagrangian function (5.89) has been introduced, one has to solve the associated
Euler–Lagrange problem in order to determine the equilibrium configurations relative
to certain boundary conditions. In other words, one has to find the particular vector d
which minimizes the first variation of (5.89). In this subsection, we will discuss the
numerical algorithm presented in [48, 49] aimed to solve this non-linear problem.

In general, one can look for equilibrium configurations of a pantographic sheet when
some displacements are imposed on a set of particles and a conservative force is applied
on the remaining system. Let us reorder the vector d as

d = (u, ua), (5.100)

where u are the free displacements, ua are the imposed displacements and we assume
that Lext depends only on u.
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By requiring that the first variation of (5.89) vanishes, one obtains

s(u)− p(u) = 0, (5.101)

which is a non-linear equation in the unknown u and where

s(u) = dWint

du
, p(u) = dLext

du
(5.102)

are the internal forces (also known as structural reaction) and the external forces vec-
tors, respectively. Let us introduce a parameter λ to describe the imposed displacements
and a parameter μ to describe the potential of the external load. In this case, Eq. (5.101)
reads:

r(λ,μ, u) := s(u, ua(λ))− p(μ, u) = 0 . (5.103)

A configuration of equilibrium relative to the parameters λ and μ is given by that vector
u(λ,μ) which satisfies:

r
(
λ,μ, u(λ,μ)

) = 0 . (5.104)

Let us consider as external force a dead load. In this case p will not depend on u and,
by assuming a linear dependence on μ, it can be written as:

p(μ) = p0 + μp̂ . (5.105)

Note that, by linearizing Eq. (5.101) around the solution u0 such that s(u0) − p0 = 0,
and by defining �u := (u− u0) we can write

0 = s(u(μ))− p0 − μp̂ ≈ s(u0)− p0 +KT (u0)�u− μp̂ = KT (u0)− μp̂, (5.106)

where we have defined the tangent stiffness matrix KT as

KT (u) = ds
du
= d2Wint

du2
. (5.107)

From Eq. (5.106) we can deduce the relation

�u = μ(KT (u0))−1p̂, (5.108)

which will be useful in the following discussion.
Let us now sketch the main steps of the Newton–Raphson algorithm used to solve

the non-linear problem (5.103). For simplicity, we will consider as boundary conditions
only imposed displacements. They will depend on a parameter λ and, by mimicking a
quasi-static state, we can divide the whole displacement into a finite number of steps
such that for the (j + 1)th one, the parameter λ will be λj+1 = λj + �λ, where the
step �λ is fixed. Let us start from an estimated equilibrium configuration (λj , uj ) for
the j th step satisfying

‖ r(λj , uj ) ‖≤ η , (5.109)

where η > 0. It means that the configuration (λj , uj ) solves the problem (5.103) in
an η-approximation. Of course, most likely, for the subsequent (j + 1)th displacement
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step, the configuration uj will not satisfy the requirement (5.109) anymore. Therefore,
for any step of the displacement, we have to calculate the increment vector �uj such
that the couple

(λj +�λj , uj +�uj ) = (λj+1, uj+1) (5.110)

satisfies Eq. (5.109). We proceed in the following way:

1. With respect to the (j+1)th displacement step, we compute the so-called residual
nodal forces:

r(λj +�λ, uj ) = r(λj+1, uj ) =: pj ,0 , (5.111)

which is, roughly speaking, the residual due to the new imposed displacement.
2. Once the hth approximation of the increment �uj has been computed (in the

following, we will discuss the corresponding sub-routine), the residual will be:

r

(
uj +

h∑
m=0

�uj ,m(λj+1, (uj ,λj ))

)
= pj ,h . (5.112)

3. If the condition

‖ pj ,h ‖> η (5.113)

is satisfied then, by assuming μ = −1 and according to Eq. (5.108), we set

�uj ,h+1 = −
(
∂r(λj+1, uj +

∑h
m=1 �uj ,m(λj , uj ))

∂u

)−1

pj ,h , (5.114)

and the iteration continues. We note that, because μ is the parameter which
describes the external forces, the condition μ = −1, is equivalent to imposing a
fictitious external dead load aimed to compensate the value of the residual.

4. If, instead, the condition

‖ pj ,h ‖≤ η (5.115)

is satisfied, then the increment vector will be

�uj =
h∑

m=0

�uj ,m(λj , uj ) , (5.116)

and the couple (λj+1, uj + �uj ) = (λj+1, �uj+1) describes the equilibrium
configuration of the structure relative to the (j + 1)th step of the displacement.

Let us conclude this section by explicitly describing how to compute the (h + 1)-th
approximation of the increment vector �uj in the simplified case in which no external
forces act on the system. The basic algorithm will be the following:

set
exit := false
K:= K (u_j )
�u := �λū (ū = 0 for free nodes and ū = u_a for the assigned

ones)
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while (loop < maxloop) and (exit=false)
s := s(u_j + �u)
u̇ := K^(−1)s
if ||u̇|| > η

�u := �u− u̇
K := K(u_j + �u)

else
exit := true

end
save

λ_j + 1 := λ_j + �λ
u_j + 1 := u_j + �u

We note that, since uj+1,h = uj +�uj ,h, condition (5.113) reduces to

‖ s(λj+1, uj+1,h) ‖> η. (5.117)

According to Eq. (5.106), we have that, by requiring

0 = s(λj+1, uj+1,h+1) = s(λj+1, uj+1,h)+KT (λj+1, uj+1,h)u̇ , (5.118)

the Newton step will be

u̇ = −K−1
T s(λj+1, uj+1,h). (5.119)

If the condition ||u̇|| < η is satisfied, then the (h+ 1)th approximation of the increment
vector will be �uj ,h+1 = �uj ,h + u̇, otherwise the routine will continue.

5.4.3 Experimental Evidence and Numerical Simulations

In this section we present some experimental results referring to pantographic lattices.
Apart from standard bias extension tests which have been widely discussed in previous
chapters, here we focus also on different experimental setups, and all the results will
be compared with numerical simulations based on the discrete and continuous models
described in the previous sections. As an aid to clarity, this section is divided into smaller
subsections referring to the various settings.

Pantographic Lattices with Non-orthogonal Fibers
In this subsection we deal with some experimental and numerical results relating to bias
extension tests referring to pantographic sheets with non-orthogonal fibers. As already
presented in previous chapters, a pantographic lattice is a bi-dimensional fabric made
up of two families of parallel fibers interconnected by small cylinders called pivots. In
the reference configuration, the angle between the two arrays of fibers is constant. Here
we will consider two different regimes: in one case this angle is bigger than π

2 , whereas
in the other it is smaller. As we will see, the resulting mechanical properties are deeply
affected by this quantity.

A possibility for building pantographic lattices is using 3D-printing. In this subsec-
tion we consider specimens in PA 2200 polyamide, realized via SLS Formiga P100.
Referring to Fig. 5.8, all the fibers of the specimen have rectangular cross section,
2.25 mm × 1.6 mm whereas the pivots are cylinders with height h = 1 mm and base
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Table 5.1 Stiffnesses for the discrete model used in the simulations presented in Section 5.4.3.

a (N/mm) b1(N mm) b2(N mm) s(N mm)

165.6 148.9 148.9 0.977

93.5

120°

2.25

Figure 5.8 Design of the pantographic lattice with θ̄ = 2π
3 used in the experimental setup

described in the first paragraph of Section 5.4.3.

diameter D = 0.9 mm. If we call θ̄ the angle between the two fibers, the first sample is
characterized by θ̄ = 2π

3 while the other has θ̄ = π
3 . These specimens have been subject

to a standard bias extension test along the direction of the longer side of the sheet: one
side of the sample has been clamped while a prescribed displacement has been imposed
at the other end. All the experiments have been performed by the MTS Bionix system
strength machine, with an elongation rate of 5 mm/min. This system has an error of
±1 N for the forces and 0.1 mm for the displacements.

Fabric with θ̄ = 2π
3

Let us start with the specimen characterized by θ̄ = 2π
3 . The maximum elongation which

has been selected is ud1 = 23.7 mm. In Fig. 5.9 there is a plot of the global reaction
forces. For a more direct comparison with the data coming from the other sample, the
non-dimensional displacement ũ = u

L1
has been chosen as independent variable, where

L1 is the length of the longer side of the sheet.
The experimental data are then compared with numerical simulations obtained by

means of both the aforementioned continuous and discrete models. The parameters used
for the simulations were chosen according to the identification procedure described in
[51], which produced the values listed in Table 5.1.

The results for the discrete model were obtained via the algorithm discussed in
Section 5.4.2, whereas the second gradient continuum model was implemented on the
software Comsol Multiphysics using the Weak Form package which makes it possible
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Figure 5.9 Reaction force measured on the specimen with θ̄ = 2π
3 versus the variable ũ. (ordinate

newtons)

to minimize a given functional. Because of the non-orthogonality of the fibers, the
stiffnesses of the continuous model have been derived from the values in Table 5.1
through the following formulas:

Ke = a

sin θ̄
, (5.120)

Kb = b

sin θ̄
, (5.121)

Ks = s

ε2 sin θ̄
, (5.122)

where ε is the distance between two adjacent pivots along a fiber.
For the simulation of the continuous model a finite element scheme was chosen which

employs cubic Hermitian polynomials and 3250 quadrilateral elements, for a total of
232388 degrees of freedom.

The graph in Fig. 5.10 illustrates the reaction force versus ũ. In particular, the global
reaction force is plotted for both discrete and second gradient simulations and compared
with the experimental data. It is noticeable that the results from the two simulations are
very similar and the agreement with the experimental data is good, since the curves
obtained via the simulations almost overlap the experimental plot.
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Figure 5.10 A plot of the reaction force versus the variable ũ for the continuous (second gradient)
model (dot-dashed line) and the discrete model (dotted line) compared with the experimental
data (continuous line). The specimen is characterized by θ̄ = 2π

3 (ordinate newtons).

In Fig. 5.11 the density of the reaction force along the clamped shorter side is shown:
the two densities correspond to the two components of the force. Although we are
plotting only the data obtained via the discrete algorithm, similar results have been
derived from the continuous model. Note that, notwithstanding the traction test, there
are negative values of the reaction force around the centre of the shorter side.

Finally, Fig. 5.12 illustrates how deformation and energy density change while
ũ increases. In particular, the four parts of Fig. 5.12 correspond to simulations
performed via the discrete algorithm imposing elongations u

ud1
= 0.25, 0.5, 0.75, 1,

respectively. In order to show the predictive power of the modeling, in Fig. 5.13 the
deformation obtained via the discrete model for the maximal elongation u = ud

is overlaid on the picture captured at the final stage of the experiment. From this
analysis it is apparent that the model is actually able to reproduce the observed
behavior.

Fabric with θ̄ = π
3

The second experiment is again a bias extension test, performed on a sample character-
ized by an angle between the fibers of θ̄ = π

3 (see Fig. 5.14). The maximum imposed
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Figure 5.11 Reaction force density (newtons) along the shorter side of the specimen with θ̄ = 2π
3 .

Grey and black indicate the two different components.

a) u/u =0.25max b) u/u =0.50max

c) u/u =0.75max
d) u/u =1.00max

Figure 5.12 Deformation and energy density for different values of the imposed displacement,
u

ud1
= 0.25, 0.5, 0.75, 1. The gray-levels correspond to the strain energy density for the

specimen with θ̄ = 2π
3 .
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Figure 5.13 Overlap of the experimental results and the numerical simulation based on the
discrete Hencky model. The specimen has θ̄ = 2π

3 .

2.25

93.5

60°

Figure 5.14 Design of the pantographic lattice with θ̄ = π
3 used in the experimental setup

described in the second paragraph of Section 5.4.3.

displacement is ud2 = 74.7 mm. In Fig. 5.15 the global reaction force measured via
the Bionix system is plotted against the relative displacement û = u

L2
, where L2 is the

length of the longer side of the sheet.
As discussed in the previous paragraph, the experimental data are compared with

simulations obtained from both continuous and discrete models. As far as the continuum
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Figure 5.15 Reaction force (newtons) measured on the specimen with θ̄ = π
3 versus the

variable û.

case is concerned, the parameters of the model have been obtained by using formu-
las (5.120)–(5.122). The model has been simulated on Comsol Multiphysics with a finite
element scheme based on cubic hermitian polynomials, 2800 quadrilateral elements, for
a total of 199 658 degrees of freedom.

Analogously to the analysis performed in the previous paragraph, in Fig. 5.16 a plot
of the global reaction force versus the relative displacement û is presented. In particular,
the reaction curves obtained via the continuous model and the discrete model with the
experimental data are compared. Note once more that the results obtained using the
two models are close and that the agreement with the experimental curve is good up to
û = 0.2.

In Fig. 5.17 we present the density of the reaction force along the shorter side, plotting
both of its components. We observe the same behavior as shown by the other sample,
with a negative reaction density in the central area of the clamped side. As in the
previous case, the plotted results have been obtained by means of the discrete algorithm
but they have been confirmed by simulations performed via the continuous model.

Finally, in Fig. 5.18 we illustrate the evolution of deformation and energy density as
û increases. In particular the four pictures correspond to numerical simulations of the
discrete model imposing elongations u

ud2
= 0.25, 0.5, 0.75, 1.
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Figure 5.16 The reaction force versus the variable ũ for the continuous model (dot-dashed line)
and the discrete model (dotted line) compared with the experimental data (continuous line). The
specimen is characterized by θ̄ = π

3 .
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Figure 5.17 Reaction force density along the shorter side of the specimen with θ̄ = π
3 . Black and

gray bars indicate the two different components.
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a) u/u =0.25max
b) u/u =0.50max

c) u/u =0.75max
d) u/u =1.00max

Figure 5.18 Deformation and energy density for different values of the imposed displacement,
u

ud2
= 0.25, 0.5, 0.75, 1. The colors correspond to the strain energy density for the specimen

with θ̄ = π
3 .

Figure 5.19 Overlap of the experimental results and the numerical simulation based on the
discrete Hencky model. The specimen has θ̄ = π

3 .

The model’s capability to describe the behavior of the sample can be appreciated in
Fig. 5.19, where the deformation obtained by means of the discrete algorithm overlaps
the experimental picture taken at the final stage of the process.

By a direct comparison of the two samples we can conclude that the orientation of
the fibers in a pantographic sheet deeply affects the mechanical properties of the sample.
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Figure 5.20 Design of the pantographic lattice with orthogonal fibers used in the experimental
setup described in Section 5.4.3.

In particular the specimen with a bigger angle θ̄ is more stiff and can absorb less energy
in the elastic regime. Indeed, the lattice characterized by θ̄ = π

3 reached a maximal
elongation ud2

L2
= 0.54 much bigger than ud1

L1
= 0.1 corresponding to the other specimen.

Fiber Push-out Test
In this subsection we consider an experimental setup, described as a fiber push-out test,
on a pantographic lattice with an orthogonal arrays of fibers. The specimen tested has
been realized by the same 3D printer and in the same material as the previous one.
The characteristics of the fibers and pivots are illustrated in Fig. 5.20: the cross-sections
of the fibers are rectangles, 2.25 mm × 1.6 mm, whereas the pivots are cylinders with
height h = 1mm and base diameter D = 0.9 mm.

The sample has been clamped at one end and then a prescribed displacement has
been applied to two fibers on the opposite side, up to a maximum value um. The test
was performed by a MTS Bionix system mechanical testing machine, with an elon-
gation rate of 5 mm/min. In order to apply the prescribed displacement only to two
fibers, a specific design was developed: a bridge connecting the two relevant fibers was
printed. A magnified view of the printed specimen is shown in Fig. 5.21, a small gap of
2.2 mm between the free fibers and the bridge is required because of the effect which is
illustrated in the same picture.

The experimental data have been compared with a numerical simulation of the same
test obtained via the discrete algorithm described in the previous section. The parameters
used are shown in Table 5.2.

The first row of values has been obtained according to the procedure outlined in
[51] with an elastic Young’s modulus E = 1.6 GPa.15 The global reaction force

15 The estimated range for the Young’s modulus is 1.5–1.7 GPa, according to the rules of EN ISO 527 and
EN ISO 178.



Lagrangian Discrete Models: Applications to Metamaterials 239

Table 5.2 Stiffnesses for the discrete model obtained by means of an identification
procedure and used for the numerical simulations presented in Section 5.4.3.

E (GPa) a (N/mm) b1(N mm) b2(N mm) s(N mm)

1.6 265.6 238.2 238.2 0.9739

1.2 198.8 178.7 148.9 0.7304

Figure 5.21 Magnified view the elongated specimen at one end. The free fibers tend to touch the
bridge.

corresponding to a simulation performed with these parameters is plotted in Fig. 5.22
versus the relative elongation λ = u

um
and compared with the experimental curve.

On the other hand, because of uncertainty in knowledge of the exact Young’s modulus
as well as the important effect of this value on all the parameters, we have looked for
a different value of E to get a better fit with the experimental curve. The results of a
simulation performed using the values in the second row of Table 5.2 are presented in
Figs. 5.23–5.25. The diagram in Fig. 5.23 shows the global reaction force versus λ

whereas the other two charts present the strain energy, separated into its three contribu-
tions, and the density of the components of the reaction force along the shorter clamped
side. It is noteworthy that, notwithstanding the extension of the specimen, the reaction
density is negative in a region around the centre of the side.

Finally Fig. 5.26 shows the evolution of the deformation pattern and energy density
as λ increases. In particular the four pictures refer to values of λ= 0.25, 0.5, 0.75, 1.
Note also that in the simulation we observe the same effect as reported in Fig. 5.21, as
illustrated by the simulation’s results shown in Fig. 5.27.

Even if the agreement with the experimental reaction curve is satisfactory using the
second row of parameters in Table 5.2, the deformation pattern is different from the
experimental one, since the central region is less contracted in the simulation with
respect to the detected one. Probably a more precise choice of the stiffnesses could
improve the match with the experimental data.
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Figure 5.22 The reaction force versus the relative displacement λ for the parameters in the first
row of Table 2.

Extraction Tests
In this last subsection we will consider another two experimental setups which will be
denoted as T1 and T2 tests. Let us consider a pantographic lattice printed in polyamide
as were the previous ones. The sample is made up of two orthogonal arrays of fibers
with rectangular cross-sections, 2.25 mm × 1.6 mm, separated by small cylinders, with
base diameter D = 0.9 mm and height h = 1mm (see Fig. 5.20).

With these characteristics, one can compute the stiffnesses appearing in the discrete
model, obtaining the values reported in Table 5.3.

Both the experiments which we discuss in this subsection have been performed using
a MTS Bionix system mechanical testing machine with an elongation rate of 5 mm/min.
During the T1-test, the specimen has undergone a displacement along one of its diago-
nals: one fiber at one short side is pinned whereas at the opposite corner a prescribed
displacement is applied up to a maximal value, um1 = 75.3 mm.

As already mentioned, a numerical simulation of the test has been performed using
the discrete algorithm presented in the previous sections. In Fig. 5.28 the global reaction
force is plotted versus the relative displacement λ = u

um1
and the curve resulting from

the simulation is compared with the one measured in laboratory. Note that there is a
good agreement between the two curves up to the value λ = 0.7.
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Figure 5.23 The reaction force versus the relative displacement λ for the parameters in the second
row of Table 2.

In contrast Fig. 5.29, illustrates the evolution of deformation and axial force as the
variable λ increases. In particular the colors refer to the level of axial force on the
extensional springs. Two pictures are shown, corresponding to λ = 0.5 and λ = 1.

The second test, namely the T2-test, consists in the application of a vertical displace-
ment, along the longer side of the sheet, on the end of a fiber, in this specific example
the sixth from the top. The bottom shorter side, instead, is clamped. The test is stopped
at the maximum displacement, um2 = 40.7 mm.

Also in this case we are going to compare the results with those obtained via a
numerical simulation of the same test based on the discrete Hencky model previously
introduced. In Fig. 5.30 a plot of the reaction force versus the relative displacement
λ = u

um2
is compared with the experimental curve: a good agreement can be noticed up

to λ = 0.6.
The two pictures in Fig. 5.31 show the deformation of the simulated pantographic

lattice for the values λ = 0.5 and λ = 1, respectively. The colors refer to the intensity
of the axial force on the elongation springs.

Let us conclude this subsection by remarking that, apart from the values of the stiff-
nesses, different power laws could also be used to define the strain energy. In particular,
the quadratic law used for the shear contribution, could be modified to get a better fit
with experimental data, as already suggested in [51].
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Figure 5.24 Contributions to the energy as the relative displacement λ increases.

5.4.4 King Post Truss Motif for Pantographic Fabrics

In [96], the king post truss motif (see Figs. 5.32 and 5.33) has been exploited at the
microscopic level in order to show the advantageous behavior which can be obtained at
the macro-level. In particular, the structure is made up by “pantographic beams” (i.e. two
orthogonal families of hinge–truss systems – referred to as beams – depicted in black),
by “king post rods” (in in dashed and dot-dashed lines) conferring a bending stiffness
to each pantographic beam, and the “auxiliary rods” (in gray lines), which prevent rigid
body motions of the lattice. We note that the king post rod configuration is completely
described by means of two parameters, i.e. (ξ1,η1) and (ξ2,η2), see Fig. 5.32b.

We note that, in [96], only two-dimensional sheet structures, and only their in-plane
motion, have been considered. This should not be considered as a limitation, as these
sheets can possibly be further combined to form multi-layered laminates or other 3D
structures. We further note that in an analogous manner to what has been done in [50,
97], the results presented in [96] for the case of orthogonal pantographic beams can be
extended to the case of non-orthogonal pantographic beams, so that also considering
orthogonal pantographic beams is not to be deemed as a limitation.

By analogy with the model presented in Section 5.4.1, a quite natural description of
a king post pantographic lattice can be given by using a set of Lagrangian parameters
which indicate the position of nodes, which can be divided in two categories: those
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Figure 5.25 The reaction force density along the shorter side of the rectangular sheet.

a) b) 

c) d) 

Figure 5.26 Deformation of the specimen for four different values of the variable λ = 0.25, 0.5,
0.75, 1. The colors refer to the level of the strain energy density.
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Table 5.3 Stiffnesses for the discrete model obtained by means of an identification procedure.

a (N/mm) b1(N mm) b2(N mm) s(N mm)

265.6 238.2 238.2 0.9739

Figure 5.27 Magnification of the numerical simulation close to the boundary with a prescribed
displacement. Note the same effect as illustrated in Fig. 5.21.
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Figure 5.28 The reaction force versus the relative displacement λ for the T1-test. Dotted line
indicates the numerical simulation whereas continuous line refers to experimental data.
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Figure 5.29 Simulation of the T1-test obtained via the discrete Hencky model. Deformations
correspond to the values λ = 0.5 on the left and λ = 1 on the right. The colors refer to the level
of the axial force on the extensional springs.
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Figure 5.30 The reaction force versus the relative displacement λ for the T2-test. Dotted line
indicates the numerical simulation whereas continuous line refers to experimental data.

at the intersection of two pantographic bars and those at the intersection of king post
bars. Note that, as we are now concentrating on planar motions, a set of 2n (with n

being the number of nodes) coordinates is sufficient. The position of the generic node
in the undeformed configuration is labeled as Pi , while its position in the deformed
configuration is denoted pi . We now turn to the definition of the strain energy of such a
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Figure 5.31 Simulation of the T2-test obtained via the discrete Hencky model. Deformations
corresponding to the values λ = 0.5 on the left and λ = 1 on the right. The colors refer to the
level of the axial force on the extensional springs.

(a) (b)

Figure 5.32 Pantographic king post lattice: king post rods (dashed and dot-dashed lines),
pantographic rods (black solid lines), and auxiliary rods (grey lines) (a) and geometric
parameters of a king post cell (b).

system. In [96], as all the slender elements in Fig. 5.32a and Fig. 5.32b are considered
to be standard elastic trusses, the following form of the discrete Lagrangian deformation
energy Wint, written in terms of the Lagrangian coordinates pi is postulated:

Wint(d) =
ne∑

e=1

1

2
ae

(‖pje − pie‖ − ‖Pje − Pie‖
)2 , (5.123)

where the vector d contains the nodal displacements of the lattice, the index e ranging
over all the ne bars, and ae is the axial stiffness of the eth bar (the stiffnesses of the rods
are not all the same, see Fig. 5.33).

Numerical and Experimental Results
In [96], numerical simulations of extension, shear and bending tests have been pre-
sented. The equilibrium configurations of the structure obtained by imposing a vanishing
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Figure 5.33 King post truss. Rod stiffnesses and geometry (left). Single pantographic square with
an auxiliary rod. Geometry and rod stiffnesses (right).

first variation of the Lagrangian function (5.123) have been numerically computed using
the algorithm discussed in Section 5.4.2.

The following data have been used for the quantities introduced in Fig. 5.32:

1. geometry: L = 66.114;
L

ε
= 4
√

2; ξ1 = 0.75; η1 = 0, 25; ξ2 = 0, 75; η2 = 0, 75;

2. mechanical properties: ap = 1;
ax

ap

= 10−5.

The following values of the displacements have been assumed for the three numerical
simulations:

1. extension test u1(0, x2) = u1(0, x2) = u2(3L, x2)= 0 and u1(3L, x2)= umax
1 = 75;

2. shear test u1(0, x2) = u2(0, x2) = u1(3L, x2) = 0 and u2(3L, x2) = umax
2 = 75;

3. bending test u1(0, x2) = u2(0, x2) = 0 and u2(3L, x2) = umax
1

(
1− 2(

x2

L
)
)

,

umax
1 = 35.

In Fig. 5.34 the non-dimensional structural reaction in the x-direction R/(3L2ap)
(Figs. 5.34a and 5.34e) and the y-direction R/(3L2ap) (Fig. 5.34c) and non-dimensional
global strain energy W/(3L2ap) evolution (Figs. 5.34b, 5.34d, and 5.34f) with varying
a = ak/ap are plotted. Figures 5.34a and 5.34b refer to the extension test; Figs. 5.34c
and 5.34d refer to the shear test; Figs. 5.34e and 5.34f refer to the bending test. In these
plots, the black triangles give an indication of the slope of the reactions linear law (λ)
and of the strain energies quadratic law (λ2).

In [96], on the basis of these plots, it is argued that, notwithstanding its simple con-
stituents, the king post motif applied to pantographic fabrics gives a highly non-linear
non-standard elastic behavior. It is remarkable that for critical extension and bending,
a reversible phase transition from a linear, relatively soft material to a hardening and
stiff one happens, while retaining a classical behaviour in shear. Indeed, in the extension
test (Figs. 5.34a and 5.34b), the system exhibits a linear (quadratic in energy) behavior
up to λ ≈ 0.4. After this point, hardening begins and this deviation from linearity in
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Figure 5.34 Extension, shear and bending tests: non-dimensional structural reaction in the
x-direction R

3L2ap
(a,e) and the y-direction R

3L2ap
(c) and non-dimensional global strain energy

W
3L2ap

evolution (b,d,f) varying a = ak
ap

and taking umax
1 = 75 for the extension test (a,b),

umax
2 = 75 for the shear test (c,d) and umax

1 = 35 for the bending test (the triangle indicates the
slope of the structural reaction linear law for the strain energy quadratic law.).

the reaction is especially evident for a = 0.01. In the case of bending (Figs. 5.34c
and 5.34d), a similar transition from a softer to a stiffer system is observable. However,
in the case of shear (Figs. 5.34e and 5.34f), the material system retains a classical linear
response (quadratic in energy) within the deformation range considered. It is possible
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Figure 5.35 Extension test: levels of deformation and strain-energy (from the top, respectively, for
pantographic, king post and auxiliary rods) for λ = 1 varying a = ak

ap
: a = 0, 01 (a,d,g), a = 1

(b,e,h), a = 100 (c,f,i).

to argue that these phase transitions occurring in selected deformation modes might
open the way to some new interesting applications. Pantographic structures exhibit, both
locally and globally, deformation modes entailing a null deformation energy.

In [96] there is discussion that beyond some thresholds, since the surface of floppy
modes has a boundary, the pantographic sheet becomes locally a standard plate, and
this phase transition entails the otherwise soft system becoming much stiffer. To give
an insight into the macroscopic behaviors of king post pantographic structure, in Figs.
5.35–5.38 some deformed shapes (colors representing the strain-energy level) obtained
at the end of the corresponding test (extension, shear, bending) are shown for varying
stiffness parameter a = ak

ap
. For clarity, we have plotted separately the deformed shapes

of pantographic, king post and auxiliary rods. In the extension case (see Fig. 5.35), the
auxiliary rods contribute only negligibly to the strain energy, while the pantographic
rods contribute the most for the adopted stiffness parameter a. In the shear and bend-
ing cases (Figs. 5.37 and 5.38, respectively), the king post rods and the pantographic
rods contribute most to the strain energy; however, the energy distribution depends on
the stiffness parameter a. For a < 1, the king post rods make the largest contribution to
the strain energy, while for a > 1 the pantographic rods make the largest contribution
to the strain energy. Finally, in Fig. 5.36 the structural reaction density on the left-hand
side for various values of a is plotted.

5.5 Towards 3D Models: Hencky-Type Model for Elastica

In this section, we briefly describe the basic tools for defining a simple model, first
introduced in a systematic way by Hencky (see [91]) and already outlined in the works
of Piola (see [98, 99]), which is able to forecast the behavior in dynamics of the Elastica
in the three-dimensional space. The model sketched below was initially presented in



250 F. dell’Isola, E.Turco, E. Barchiesi

-10 0 10 20 30 40 50 60 70 80y
-1.5

-1

-0.5

0

0.5

1

1.5
r

-10 0 10 20 30 40 50 60 70 80y
-3

-2

-1

0

1

2

3

r

-10 0 10 20 30 40 50 60 70 80y
-20

-15

-10

-5

0

5

10

15

20

r

rxry

rxry

rxry

(a) (b) (c)

Figure 5.36 Extension test: structural reaction density r on the left-hand side (x = 0) for λ = 1
and varying a = ak
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Figure 5.37 Shear test: levels of deformation and strain-energy (from the top, respectively, for
pantographic, king post and auxiliary rods) for λ = 1 varying a = ak

ap
: a = 0.01 (a,d,g), a = 1

(b,e,h), a = 100 (c,f ,i).

the static case for straight beams, see [100], revealing its ability to predict equilibrium
paths parameterized by (one or more) load parameters in a large displacements regime.
Following the spirit of Lagrangian mechanics, we introduce the main hypotheses of the
model and, successively, the external load energy contributions, and the elementary con-
tributions to the strain and kinetic energy in addition to describe the load contributions.
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Figure 5.38 Bending test: levels of deformation and strain-energy (from the top, respectively, for
pantographic, king post and auxiliary rods) for λ = 1 varying a = ak

ap
: a = 0.01 (a,d,g), a = 1

(b,e,h), a = 100 (c,f ,i).

Let us consider in the three-dimensional Euclidean space E3 an inextensible beam and
let us suppose that the mechanical behavior of the beam can be described by a sequence
of rigid and rectilinear links, of the same length �16 connected by point bending elastic
joints. The position of an arbitrary point of the lth link is described by the vectors Rl and
rl which define its reference and current configurations, respectively. The orientation of
each link, instead, can be completely described by the unit vectors D3l and d3l in the ref-
erence and current configurations, respectively. The local reference system is completed
by the unit vectors D1l and D2l which are relative to the reference configuration, whereas
we have indicated with the unit vectors d1l and d2l the corresponding description of the
current configuration. For each rigid link, for the reference and current configuration,
respectively, we have

Rl+1 = Rl + � D3l ,

rl+1 = rl + � QlD3l ,
(5.124)

where Ql is a rotation matrix which, by means of the Rodrigues’ formula,17

Ql = cosϕl I+ (1− cosϕl) el ⊗ el + sinϕl El , (5.125)

where ϕl is the rotation angle, el the unit vector which defines the axis of rotation, and
the tensor El is defined by Elu = el × u for any vector u.

16 This hypothesis can easily be relaxed.
17 In Euler’s paper [101] it is possible to find this representation, as reported in [102].
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The rotation angle ϕl relative to the axis el can be expressed in terms of the rotation
tensor Ql as

2 cosϕl = tr Ql − 1 , (5.126)

2 sinϕl el = Ql× ,

where Ql× is the vectorial invariant of Ql and with tr (·) we have indicated the trace
operator. The finite rotation vector18 associated with Ql can be defined as

θθθl = 2 tan
ϕl

2
el , (5.127)

so that, as a consequence, each Ql can be written as [104]

Ql = 1

4+ ϑ2
l

(
(4− ϑ2

l )I+ 2θθθl ⊗ θθθl + 4ϑlEl

)
, (5.128)

where ϑ2
l = θθθl · θθθl . The use of a vector in place of a tensor for defining a rotation

represents the main advantage of Eq. (5.128). This not only simplifies the definition of
the strain energy, but it is also convenient computationally.

Having defined the kinematics of the motion for each rigid link, we need a suitable
measure for the strain of elastic joints. For the joint between the lth and the (l + 1)th
link, the relative rotation tensor Pl+1 is defined in the following way:

Pl+1 = QT
l Ql+1 , (5.129)

whereas the vectorφφφl+1 of the finite rotations, or, alternatively, the angle φl+1 of relative
rotation and the vector el+1, are defined by Eq. (5.126).

Finally, by using the finite relative rotation vector φφφl+1 just introduced we can define
the strain energy. The simplest form is

2El+1 = φφφl+1 · Bφφφl+1 , (5.130)

where the matrix B collects the stiffness parameters. If we choose a diagonal form for
B, the three stiffnesses are related to bending (two terms), and torsion (one term). From
Eq. (5.130), it is possible to derive the structural reaction, the gradient, and the tangent
stiffness matrix (the Hessian) related to the pair of links sharing the same elastic joints.

In order to complete the description of the discrete model introduced in the spirit of
Hencky, we need the definition of the kinetic energy of each rigid link involved in the
modelling of the beam. The lth rigid link can be viewed as a rigid body and, therefore,
the current position of each single material point is described (see [104] for a concise
introduction to the dynamics of rigid bodies and [102, 105] for an extended one), by

rl(t) = RlO + ul(t)+Ql(t)Zl , (5.131)

where RlO is the position in the reference configuration of an arbitrary point of the lth
link chosen as pole, ul the displacement of the pole O, and Zl the position of an arbitrary
material point in the reference configuration.

18 Apart from an irrelevant factor 2, expression (5.127) can also be found in O’Reilly [102] and is called the
Rodrigues vector. In the authors’ opinion, Eq. (5.127) was initially written to exploit its suitability for
small displacement analysis.
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Deriving Eq. (5.130) with respect to time, we can compute the velocity

ṙl(t) = u̇l(t)+ Q̇l(t)Zl , (5.132)

where dots indicate time derivatives. Since Ql is a proper orthogonal tensor, then

Q̇l = Q̇lQT
l Ql , (5.133)

and, furthermore, we note that Q̇lQT
l is a skew-symmetric tensor. Therefore, by using

the angular velocity vector ωωωl defined as

ωωωl = −1

2

(
Q̇lQT

l

)
×

, (5.134)

we can rewrite Eq. (5.132) as

u̇l(t) = u̇lO (t)+ωωωl(t)×Ql(t)Zl , (5.135)

where it is possible to distinguish between translation and rotation velocities.
In order to work with handy formulas, it is convenient to choose as pole O the mass

center of the link, which is defined asˆ
vl

ρ(rl − rlO )dv , (5.136)

where ρ is the mass density, in such a way that the kinetic energy can be expressed as

Ec = 1

2
(ml u̇lO · u̇lO +ωωωl · Jlωωωl ) , (5.137)

where the inertia tensor Jl can be evaluated as

Jl = Ql

(ˆ
Vl

ρl ((Zl · Zl ) I− Zl ⊗ Zl ) dV

)
QT

l . (5.138)

Some further specifications are still needed to obtain the vector of generalized external
forces.19

For example, a torque ml on the lth link gives a contribution Wc to the external work
which is equal to

Wc =
2 arctan

‖θθθl‖
2

‖θθθl‖ ml · θθθl , (5.139)

taking into account the change of variables defined in Eq. (5.127). Similarly, the contri-
bution to the external work of an external force fl acting on the position α� from the left
end of the lth link can be computed:

Wf = f ·
(

(r1 − R1)+ �

l−1∑
k=1

(Qk − I) D3k + α� (Ql − I) D3l

)
. (5.140)

Analogously, it is possible to compute the contributions to the external work of dis-
tributed axial and shear loads and distributed torques.

19 We emphasize that in this section all the generalised external forces are dead loads.
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5.6 Conclusions and Perspectives

In this chapter, we have reviewed a method proposed in [48] to model complex mechan-
ical systems in terms of a discrete Lagrangian model directly inspired by the microstruc-
ture of the system. Two examples have been analyzed in detail, namely the pantographic
sheet and the three dimensional Elastica. A good agreement with both homogenized
second gradient continuum theory and experimental data has been obtained, including
when the structure under analysis undergoes large deformations [92]. Higher gradient
continua are those continua in which different length scales play an important role
at macro-level (see for instance [36, 40, 80, 93] and the chapters about pantographic
structures, and [46, 124]) In order to make the discussion self-consistent, a review of the
main ideas and tools of the Lagrangian formulation of mechanics was presented at the
beginning of the chapter.

Starting from the results presented, several interesting research lines can be consid-
ered. For instance, one may look for a generalization of the discrete model for the
pantographic sheet to out-of-plane deformations (preliminary studies can be found in
[92, 106, 108, 109]). To this end, the analysis performed in the last section can be
considered as a preparatory stage. Another interesting possibility is to study wave-
propagation phenomena in a pantographic sheet [28, 110–113], by implementing the
kinetic energy part in the Lagrangian function also, following the methods discussed in
Section 5.5 for the three-dimensional Elastica. The feasibility of the description of non-
ordered microstructure by means of the methods presented can also be analyzed. Finally,
the analysis of fiber rupture is of great interest for engineering applications [114–123].

The hope of the authors is that the discussions herein have brought out the importance
of the Lagrangian formalism in modern mechanics, in particular when it is wished to
exploit the relation between discrete and continuous models.
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6 Experimental Methods in
Pantographic Structures
F. dell’Isola, T. Lekszycki, M. Spagnuolo, P. Peyre, C. Dupuy, F. Hild,
A. Misra, E. Barchiesi, E. Turco, J. Dirrenberger

6.1 Introduction

Experiments are integral to the development of physical theories. They serve the critical
role of verifying and validating the principles and assumptions that form the basis of
theoretical developments. The predictive ability of a physical theory must be tested
against experiments to establish its applicability and credibility. This chapter focuses
upon experimental approaches and measurements that aim to test the theoretical prin-
ciples and tools employed to develop and design the novel pantographic metamaterials.
Undoubtedly these metamaterials are endowed with exotic properties as shown through
theoretical analyses, such that at their macroscopic scale, that is at the specimen size
with as many pantographic sub-units as possible, they may be considered as a second
gradient continuum material [1–7, 64]. However, such pantographic structures do not
appear ordinarily in materials formed by currently extant manufacturing or natural pro-
cesses. Clearly, before attempting to devise a suitable experimental program that can
establish their second gradient continuum nature, it is necessary to address the ability
to realize such a metamaterial. Indeed, only in the last few years attempts to synthesize
physical specimens of pantographic materials have been successful, see Fig. 6.1.

In the discussion that follows, we give an account of the steps undertaken to validate
the development of pantographic metamaterials from their theoretical conception to
their physical realization. These steps span computer-aided design for the manufacture
of different variants of the structure up to a suite of mechanical tests performed to deter-
mine the essence of their behavioral characteristics. Since these materials also exhibit
resilience under large deformation, we also discuss experimental evidence related to
their damage and failure. Specifically, we have divided the subsequent exposition into
four macro-categories: (i) design and manufacture, (ii) experimental measurements,
(iii) failure and damage analysis, and (iv) digital image correlation (DIC) analysis.

6.2 Design and Manufacturing

In the recent past, computer-aided manufacturing with the advent of 3D printing
technology has been having a transforming impact in the field of mechanics. With
this technology it is possible to manufacture specimens whose geometrical structure
can be controlled with precision and reliability. The possibility to specify a design
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Figure 6.1 Different views of a steel pantographic structure at three length scales: (left) natural
size, (top right) view of the interconnecting pivots, (bottom right) magnification ×40.

and manufacture an object by means of software has far reaching consequences for
experimental as well as numerical investigations. The microstructure of a sample can be
more complex and better controlled as opposed to traditional manufacturing methods.
The clear implication is that experimental results will be more reliable, repeatable
and less affected by several sources of variability usually encountered in mechanical
testing. From the viewpoint of analysis, there is no need for abstractions of geometrical
features, particularly with respect to boundary conditions, that need to be commonly
employed when usual sample preparation methods are used. Thus there is promise
of more reliable evaluation of the theoretical concepts with the ensuing experimental
data. The conceived pantographic structure described in Chapter 2 was manufactured
by means of 3D printing technology. The production process consisted of two steps:
(i) computer-aided design, and (ii) additive manufacturing. The samples have been
produced with different geometrical properties, as well as with different base materials,
e.g. polyamide, steel, aluminum, etc. The production of a wide range of samples was
possible due to an extended network of collaborations across the world.

6.2.1 Design of Pantographic Structures

An appealing feature of the computer aided design and additive manufacturing route is
that exactly the same geometry can be used for both manufacturing and full-scale 3D
numerical simulations. This point is well illustrated in Fig. 6.2, which provides a resume
of the complete processing history of a particular pantographic structure beginning from
its theoretical conception up to its actual production.
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Figure 6.2 Processing history of a newly conceived pantographic structure, whose fibers are in
turn pantographic beams: (a) proof-of-concept; (b) CAD model; (c) final printed polyamide
structure; (d) zoomed detail of the printed specimen.

In Figs. 6.3–6.5, additional examples of CAD models for the design of different
pantographic structures are shown. In Fig. 6.3, a pantographic structure with so-called
“perfect” pivots is shown. The adjective “perfect” applies because the pivots function
as true hinges (or pin joints) such that negligible (neglecting minor frictional interac-
tions) rotational energy is stored in these pivots. Unlike “standard” pivots, which are
deformable small cylinders (subject to torsional and shear actions), the “perfect” pivot
ensures that the intersecting fibers undergo the same displacement while allowing only
for arbitrary relative rotations.

Specimen with “perfect” pivots, in contrast to those with standard ones, afford the
possibility of isolating the contribution of fiber bending to the global deformation energy
of the pantographic structure, particularly under a deformation range within which the
fiber elongation has a non-negligible contribution, which covers a wide range of com-
pressive and extensive deformation regimes. Indeed, in [25–27] it has been shown that
when the fibers are behaving like small-strain extensible Euler beams, the second gradi-
ent contribution to the deformation energy of an equivalent elastic small-strain contin-
uum model describing the mechanical behavior of pantographic fabrics is given by the
bending energy of such fibers.

Further, Fig. 6.4, shows the design of a “millimetric” pantographic sub-structure,
whose dimensions are approximately 1 cm × 3 cm. The realisation of such a sub-
structure, composed of a few basic units, presents the possibility of exploring with
greater detail the local behavior of more complex structures made up of a larger numbers
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Figure 6.3 Design of a pantographic structure with perfect pivots. The stl file can be used both for
numerical simulations and for manufacturing a specimen.

Figure 6.4 CAD modeling of a so-called millimetric pantographic structure.

of primitive cells. Finally, a third example of manufacturing of pantographic structures
is shown in Fig. 6.5. This kind of pantographic structure is not a sheet-like material as
those which have been presented so far. Instead, it is made up of many layers, so that its
depth cannot be neglected. With this design choice it is possible to suppress the unde-
sirable out-of-plane motions when performing certain mechanical tests to determine
in-plane deformability properties (like the three-point bending test in the figure).
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Figure 6.5 A multi-layers pantographic structure.

6.2.2 Additive Manufacturing

General Trends in AM and SLM Processes
Additive manufacturing (AM) provides new and valuable solutions for generating com-
plex metallic or polymer shapes, mainly through the interaction of an energy source
with a wire or powder material. The main application, and major advantage, of this
technique is to generate simultaneously the shape and the constitutive material in a
single step. The basics steps of AM are as follows: 3D parts, discretized by triangles
and their normal vector, are generated in the form of a STL file utilizing CAD software.
This file is used as input data for specific AM software where the 3D part is virtually
sliced into thin layers, positioned on the building platform of the 3D printing machine
and connected to the plateau with dedicated supports that combines two functions:
(1) dissipating heat, (2) avoiding thermal distortions and clamping of parts on the plate.
For AM metal processes, specific care is also given to the minimization of overhanging
areas where overheating zones usually occur and cause a deterioration of surface rough-
ness. Among AM techniques, the selective laser melting (SLM) process, also called
laser beam melting (LBM), provides spatial resolution, due to the small size of the
laser beam (usually in-between 50 and 100 µm), and the height of the powder layers
(20 to 50 µm).
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This process, including electron beam melting (EBM), is one of the so-called powder
bed processes and is certainly the most promising one for combining complex geome-
tries with satisfactory metallurgical and mechanical behaviors, usually as a compromise
between cast and wrought alloys. Basically, the SLM process is based upon the laser
melting and resulting consolidation of a powder bed layer, using dedicated first order
process parameters (laser power, scan speed, beam diameter, hatch distance) and follows
a scanning strategy initially determined in the AM software file. This strategy includes
more-or-less complex contour (for the outer surface volume) and hatching (for the inner
volume) steps with the global objective of achieving dense matter while limiting heat
concentration areas. As a whole, a SLM part is obtained by the overlap of hundreds
of meters of welding beads (approximately 500 m of bead/cm3), performed in an inert
gas atmosphere (Ar, N2), each of them having dimensions of approximately 200–300
µm in width and in depth. Usually, after a preliminary optimization step, very low
porosity rates (less than 0.2 %) can be obtained in most metallic parts. In a final step,
such porosities can be suppressed by post-SLM hot isostatic pressing (HIP), resulting
in almostfully-dense metallic alloys. The generation of architectured materials with
unusual combinations of properties is certainly one of the most promising features of
the AM process [11]. A number of recent publications on a large range of materials
(titanium, steels, aluminum-base, nickel-base, Ti-Ni shape memory alloys) have already
demonstrated the feasibility of SLM or EBM manufacturing applied to lattice structures.
This technique has been chosen to manufacture some special shapes of lattice structures
also called pantographic fabrics from an STL file.

Experimental Work
• SLM equipment

In this survey, an SLM125HL set-up from SLM solutions has been used. This
machine is equipped with a 400W YAG laser (YLR-400-WC) at a wavelength
of 1070 nm. The scanning speed range is between 400 and 1500 mm/s. The
minimum diameter of the laser at the focus point is about 70 µm. Layer thickness
can vary from 30 to 100 µm.

• Powder material
Gas atomized powder of 316L stainless steel has been used to create the panto-

graphic structure. This powder has been characterized by SEM and by particle
size analyzer (CILAS 920). Other kinds of powder materials can be used in
fabricating pantographic structures. Here the case of stainless steel is described,
but already existing results have been found in the case of aluminum. If other
materials are used, it could be useful to study the microscopic and macroscopic
mechanisms involved in the deformation process, as has been done in [31] for
aluminum and in [32] for titanium.

As seen in Fig. 6.6, powder have particles have a spherical shape. The mean
diameter of the volume distribution of the particle size is 37 µm. Its composition
is shown in Table 6.1. To prevent oxidation of the powder the process takes place
under shielding gas (argon) with less than 500 ppm O2.



Experimental Methods in Pantographic Structures 269

Table 6.1 Composition of the 316L stainless steel

Element Fe C Si Mn P P S Cr Ni N

wt% Balance 0.01 0.65 1.19 0.023 0.005 17.17 10.99 2.47 0.1

Figure 6.6 SEM image of 316L powder.

• File preparation for 3D printing
Once the 3D drawing of the pantographic structures was done, it was converted

to stl format so that it could be prepared for manufacturing using the MAGICS –
Materialize software. The samples were positioned perpendicularly to the plate,
as shown in Fig. 6.7, to maintain a similar geometry on both sides of the sample
even though a 45° tilt of the sample would have been preferable for the realiza-
tion of the pivots. The samples, above the plate, are positioned on 4 mm-height
supports in order to facilitate their removal after manufacturing and to favor heat
dissipation.

• Laser parameters
In order to limit thermal deformations, volume energy distribution was lowered

by a small amount compared to the standard machine parameters. The parameters
used were as follows: P = 175 W V = 800 mm/s, hatch distance = 100 µm.
Figure 6.8 shows the samples manufactured on their build platform. No heat
treatment has been applied to the samples either before their removal or after.

• Post-mechanical testing analysis of SLM samples
The samples were then subjected to static tensile testing. Images of the pivots

taken after tensile tests highlight a rotation of the pivots at the ends of the samples
with or without fracture, while in the center of the samples pivots do not seem to
have moved as shown in Fig. 6.9.
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Figure 6.7 Visualization of the supports created between the sample and the platen.

Figure 6.8 Manufactured samples.

SLS for Polyamide Specimens
Selective laser sintering (SLS) was used to fabricate polyamide specimens. Figure 6.10
shows an example of a polyamide printed pantographic structure. The SLS 3D printing
process requires the specification of a number of parameters, which include, among
others, the pre-heating temperature, the laser power, and the bed cooling time. Also
a careful choice of the arrangement of prototypes in the virtual printing chamber is
required. A misorientation of the model, especially when the model includes multiple
moving parts (as in the case of hinges in “perfect” pantographic fabrics), can affect
functionality or render a specimen completely useless. After printing, especially in
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Figure 6.9 SEM top view of the beam-pivot connection at the middle of the sample after tensile
testing (left). SEM top view of a beam-pivot connection at the end of the sample after tensile
testing (right).

Figure 6.10 Top view of the beam-pivot connection at the middle of the polyamide sample after
tensile test (a). A detail showing the granular nature of the material (b).

SLS technology, it is necessary to wait until all the objects are cooled down in order
to reduce material contractions. Inadequate cooling procedures could lead to internal
differential pre-stresses in the material, entailing impaired performances or even rupture
of the printed specimen. As a final step of the fabrication, the fabricated specimen is
subjected to a cleaning process. Either pressurized air, abrasive blasting or ultrasonic
washers may be used to clean the unsintered powder from void spaces of the specimen.
Before finalizing a SLS protocol for a given specimen, test runs are executed in order
to determine the optimal setting for specimen manufacturing and the optimal geometric
properties of the CAD model.

6.2.3 Tomographic Analyses

Preliminary tomographic analyses have been carried out on a stainless steel panto-
graphic structure. This type of analysis will be used in the future for the understanding
of microscopic mechanisms of damage and failure. The acquisition was conducted at
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Figure 6.11 3D rendering of a steel pantographic structure at macroscale and mesoscales.

low resolution inside a North Star Imaging X50+ tomograph, using a source setting of
170 kV, 600 μA and a 1536 × 1944 pixel panel detector. The physical voxel size is
69.5 μm in order to image the whole sample. 800 radiographs were acquired over the
360◦ of rotation with a frame average equal to 10. The acquisition frequency was 10 fps.
The total duration of a single acquisition was approximately 30 minutes. A 0.5 mm thick
copper filter was used. Figure 6.11(left) shows the 3D rendering of a steel pantograph,
and Fig. 6.11(right) a close-up view of a section showing the mesostructure.

6.3 Comparison between Experimental Measurements
and Numerical Simulations

The pantographic structures realized using AM techniques were tested under a variety
of loading conditions to experimentally verify and validate the theoretical basis of their
development. The testing program particularly focused upon their wide elastic defor-
mation range and their high resiliency. In the subsequent discussion, we will present
results from the following tests: (i) bias extension of steel specimens with standard
and quasi-perfect pivots, (ii) bias extension of millimetric pantographic structures, (iii)
torsion of aluminum specimens, and (iv) three-point bending of polyamide multi-layer
pantographic lattices.

6.3.1 Extension Tests of Steel Pantographic Structures

In Fig. 6.12 a force-displacement diagram is shown for a pantographic structure with
standard pivots, and in Fig. 6.13 the corresponding deformed shapes for different
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Figure 6.12 Axial force vs imposed displacement for a BIAS extension test performed on a steel
printed pantographic structure.

Figure 6.13 Deformed shapes of a steel pantographic structure.

values of prescribed displacement are presented. It is instructive to compare the force-
displacement curve in Fig. 6.12 with that in Fig. 6.14, which gives measured behavior
for a structure with “perfect” pivots. Remarkably, the measured force for the case
of a specimen with “perfect” pivots is an order of magnitude smaller than that for
a specimen with standard pivots over the range of the imposed displacement. It is
notable, though that in these steel specimens, there is strong evidence that the “perfect”
pivots are not ideal hinges [28]. Indeed, at the considered length-scale, the 3D-printing
manufacturing process is still not able to ensure that the hinge is ideally frictionless.
Finally, in Fig. 6.15, deformed shapes for different values of prescribed displacement
for the structure with “perfect” pivots are reported.

Resiliency of Pantographic Structures
The measured behavior under BIAS experiments also shows that the damage tolerance
(resiliency) of pantographic structures is rather noteworthy. This aspect is clear from the
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Figure 6.14 Axial force vs imposed displacement for a BIAS extension test performed on a steel
printed pantographic structure with (theoretically) perfect pivots.

Figure 6.15 Deformed shapes of a pantographic structure with perfect pivots.

force-displacement plots discussed earlier as well as that shown in Fig. 6.16 (the figures
refer to a specimen 3D printed in stainless steel, with quasi-perfect pivots). The force-
displacement diagram for pantographic fabrics customarily exhibits a peak at the end of
the stiffening stage. After the peak, the structure undergoes sequential rupture of its sub-
components, typically the shearing of pivots, resulting in a cascade type softening. The
gradual cascading softening leading to failure suggests that the topology of the structure
and the deformability properties of its members are such that, when a sub-component
rupture occurs, load can be redistributed in a mitigating manner that prevents simulta-
neous catastrophic rupture. In fact such resiliency is also exhibited by the pantographic
structure when failure of its sub-components occurs before the peak load, as seen in Figs.
6.16 and 6.17. Similar observations across several specimens clearly demonstrate the
resiliency of pantographic structures. Further theoretical investigations in these aspects
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Figure 6.16 Force vs displacement diagram for a pantographic structure with perfect pivots. In
this test, the structure has undergone the subsequent rupture of several pivots. The main rupture
events are apparent from the small bumps before irreversible collapse of the structure.

Figure 6.17 Deformed shapes of a pantographic structure with perfect pivots: subsequent rupture
of several pivots.

are currently underway as this is a promising line of research for applications related to
performance engineering.

6.3.2 Millimetric Pantographic Structures

We refer below to the specimen of the type shown in Fig. 6.4 as a millimetric pan-
tographic structure. In Fig. 6.18 selected experimental measurements on these types
of specimen are compared with the theoretical predictions based upon the enhanced
Piola–Hencky model described in [19]. By means of this model it is possible to obtain
good agreement with the experimental data. In Fig. 6.19 the computed deformed shapes
are compared to the measured ones.
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Figure 6.18 Force-displacement diagram for a millimetric pantographic structure. Comparison
between experimental data and predictions based on the enhanced Piola–Hencky model. The
displacement is expressed in terms of the adimensional ratio λ = �L

L0
.

Figure 6.19 Deformed shapes of a millimetric pantographic structure for different values of the
prescribed displacement (a) and comparison with numerical simulations (b).

6.3.3 Torsion Tests and Emerging of Atypical Poynting Effect Reversal in Aluminum
Pantographic Structures

Due to their unique distribution of deformation energy within beams and pivots, pan-
tographic structures exhibit interesting behaviors under torsional loading. These behav-
iors are influenced by the competition of the emerging geometrical properties and the
response of the material composing the structure. One of the effects that has emerged
recently in pantographic structures is the nonlinear Poynting effect as reported in [24].

Poynting Effect and Reverse Poynting Effect
The Poynting effect is a phenomenon observed in elastic materials. From a geometric
point of view, it comes from the fact that the deformation of any square element of
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an elastic material is the most important in its diagonals. That phenomenon may be
observed during the torsion of a beam as an axial effect: although there are no axial
loads, the length of the beam changes. Alternatively, if the beam has fixed extremities,
an axial reaction force appears. Under such a load, if the beam tends to increase its
length, the Poynting effect is said to be positive. On the contrary, if the beam tends to
shrink, then it is a negative or reverse Poynting effect. While the usual materials where
this phenomenon may be observed present a linear relation between the reaction force
and the squared angle of rotation, the focus of the article [24] is on a certain material
which shows a non-linear Poynting effect. That is to say not only is the above-mentioned
relation not linear, but the phenomenon may also be reversed, so that increasing the
rotation angle decreases the reaction once a certain critical angle is reached.

Studied Pantographic-structured Metamaterial
In order to study the causes of the nonlinear Poynting effect, several objects with such a
structure were built, with varying dimensions and relative stiffness between the pivot and
the beams. To measure the Poynting effects during the torsion, each specimen was fixed
at the bottom end, while the other end was twisted progressively. The vertical elongation
at the upper end was constrained so that the Poynting effect could be quantified by
measuring the upper axial reaction force (see Fig. 6.20).

Results of the Torsion Tests
The evolution of the axial reaction force during the torsion for each specimen is repre-
sented in Fig. 6.21. The resulting behaviors were clearly not linear: while every stud-
ied object showed a positive Poynting effect at first, the increase of reaction force
for a fixed increase in rotation angle decreased progressively. Most of the specimens

Figure 6.20 Torsion test.
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Figure 6.21 Torsion tests results: axial reaction force versus rotation angle. Usual Poynting effect
would be represented by a linear function.

showed the reversal of the Poynting phenomenon, reached when the slope (of the curves
in Fig. 6.21) reduced to zero. After that point, the reaction force decreased, to the
extent that it became negative for the first three specimens, showing an inverse Poynting
phenomenon.

Interpretation and Modeling
• Competing deformation mechanisms

The differences in experimental behavior may be accounted for as resulting
from two competing mechanisms: the bending of the beams on the one hand, and
the shearing of the pivots on the other. The influence of each mechanism may be
explained by the original geometrical aspect of the Poynting effect. Among the
relevant parameters characterizing the material, the relative deformation of the
beams and the pivots is here the most important one. Indeed, the squares making
up the initial lattice are sheared during the torsion test, so that the direction of
the elongated diagonal determines whether the material as a whole is elongated
or compressed. Consequently, when the pivots are weaker, they will allow a
change in the angle of the lattice while the beams keep their length, resulting
in a reverse Poynting effect. On the contrary, if the beams are the less stiff, they
will be bent during the torsion test, while the stiff pivots will fix the angles; this
makes the deformed shape extend itself in the direction orthogonal to the twist
axis, and results in a positive Poynting effect (see Fig. 6.22). As for the reversal
phenomenon, it appears if the more deformed parts are the beams at first, and then
the pivots, where the relative deformations are quantified by the ratio between
their respective deformation energies.

• Mathematical modeling
It should be noted that, to model macroscopically the behavior that was

geometrically justified above, one has to use a generalised continuum model,
as the double-scale of the problem cannot be fully taken into account by a
classical Cauchy elastic material. More specifically, in [24], the authors used a
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Figure 6.22 Torsion of an aluminum pantographic structure showing the Poynting effect reversal.

bidimensional second-gradient continuum model: second-order phenomena were
taken into account by the second gradient of the displacement, that is to say the
strain gradient. Several characteristic stiffnesses were then identified to build a
proper macroscopic continuous model of the studied material, which led to its
numerical modeling and simulation.

6.4 Damage and Failure in Pantographic Fabrics

The resiliency of pantographic structures is clear from the extension test measurements
discussed earlier. Here we further discuss the issue of damage and failure in panto-
graphic structures [13, 14]. The ensuing discussions are based upon experimental data
published in [9, 15].

6.4.1 Mechanisms of Rupture

Experimentally, three different mechanisms of rupture have been observed: one con-
cerning the fibers and two related to the pivots. The fiber rupture occurs when the
maximum elongation is reached related to the geometrical and material features of
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the fiber in a considered sample. On the other hand, the pivots can experience failure
depending on two different mechanisms: (i) the shear of the pivot, and (ii) its torsion.
Needless to say, failure occurs when reaching certain thresholds, in shear (i) or torsion
(ii) of the pivot. As a qualitative observation, it is possible to forecast which of these
mechanisms will prevail by considering the shape ratio of the pivots: for “slim” pivots
it has been observed that the shear mechanism prevails, while for “stubby” pivots the
torsion mechanism plays the fundamental role.

In the following sections we quantitatively analyze the aforementioned mechanisms.

Fiber Elongation Mechanism
From a quantitative viewpoint for characterizing rupture, the discrete quasi-static
Hencky spring model described in the previous chapter can be modified by considering
a simple irreversible rupture mechanism for the extensional springs, as discussed
in [13]. An extensional spring fails if its deformation level exceeds a certain threshold.
Experimental data for a displacement-controlled bias extension test (Fig. 6.23) are
provided in [9]. The first fiber failure is observed at the corners of the specimen, where
the elongation of fibers attains its maximum, as also predicted by the second gradient
continuum model discussed in the previous chapter.

This predicted failure initiation has also been confirmed by a displacement-controlled
shear test [13] (see Figs. 6.24 and 6.25). It was also observed that in this case the
elongation of fibers attains its maximum at the corners of the specimen. We note that in
the proposed second gradient model, the assumed damage mechanism was that of the
fibers due to their elongation.

Pivot Shear Mechanism
In [14], a pivot damage mechanism due to shearing of pivots, i.e. fibers detaching due
to relative sliding in correspondence of pivots, is taken into account, allowing sliding
between the two layers (families) of fibers. Thus, the non-linear homogenized quasi-
static model for the discrete system discussed in the previous chapter is modified by
introducing, in the spirit of mixture theory, two independent placement functions χ1 and

Figure 6.23 Force versus prescribed displacement for a bias extension test. (a) Sample before first
beam breakage (i.e. breakdown onset); (b) upper-left corner beam breakage; (c)-(f) further fiber
breakages.
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Figure 6.24 (a) Damage onset (λ = 0.976) of a shear test. (b) The broken fiber is in black and it is
indicated by the arrow.

Figure 6.25 Force (N) vs non-dimensional displacement for shear test of a pantographic sheet up
to the onset of fiber breakage.

χ2 (the placement functions of body points belonging to horizontal and vertical fibers,
respectively) defined on the same reference domain and, accordingly, considering the
following nonlinear (elastic) strain energy to be minimized:
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Figure 6.26 Depending on the geometrical features of the considered pantographic structure, one
can predict a relative displacement between the fibers in the corner of the rigid triangles near the
short sides of the structure (a) or on the long sides of the sheet (b).

where Kint (resistance to the relative sliding of the two layers) evolves following a
criterion based on thresholds for the relative distance δ = ‖χ1 − χ2‖ between χ1 and
χ2. Depending on the geometrical features of the considered pantographic structure,
one can then predict a relative displacement between the fibers in the corner of the
rigid triangles near the short side of the structure or on the long sides of the sheet (see
Figs. 6.26 and 6.27).

One can then qualitatively forecast the development of fracture in the pantographic
sheet by allowing the beams to slide with respect to one another with correspondence
of the pivots as introduced in [14] and [16]. Indeed, the algorithm developed in [16] is
able to forecast the onset of fracture, by considering a mechanism based on a threshold
of the relative displacement (corresponding to the shear of the pivot, as experimentally
observed). We note that in this algorithm, the model used is based on the non-linear
Euler–Bernoulli beam theory and the pivots are modeled as extensional springs whose
elastic constant corresponds to the Kint of the homogenised model.

In Fig. 6.28 it is possible to observe the relative displacement between beams as a 3D
bar graph, plotted on the shape of the pantographic sheet. A noteworthy aspect related
to the introduction of the cubic factor in the sliding energetic term is the breaking
of symmetry in the plot of relative displacement seen in Fig. 6.28. From the view-
point of fracture initiation, it is clear from the figure that there are two maxima which
correspond to two precise pivots. One of them will undergo the first rupture, due to
a flexural/shear stress. This numerical prediction is validated in Fig. 6.29, where an
illuminating sequence showing the load step when the first fracture occurs is presented:
the broken pivot is precisely the one predicted by the model.
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Figure 6.27 Comparison between experimental emerging of the first rupture in an aluminum
pantographic structure (a) and numerical prediction (b) of the maximum of the relative
displacement between the fibers (relative displacement in colour scale).

Figure 6.28 Plot of the relative displacement of the shape of the pantographic sheet in the
framework of the nonlinear Euler–Bernoulli beam meso-model.

A dissipation problem could be suitably adapted to the relative displacement descrip-
tion. In this case, it would need a preliminary analysis on the friction mechanisms, such
as the one presented in [76].

Pivot Torsion Mechanism
Finally, we consider a rupture criterion based on computation of the shear angle1 (see
Fig. 6.30). One can relate the torsion of the pivots to the shear angle. For certain
specimens endowed with a particular set of geometrical parameters, the rupturing
development is controlled (and initiated) by excessive shear deformation (or torsion) of
the pivots (Fig. 6.30). In the displacement-controlled shear test in Fig. 6.24, the shear
attains its maximum near the two internal vertices of the quasi-rigidly deforming
triangles. The results of numerical modeling incorporating this type of rupturing

1 We refer here to the shear of the whole pantographic structure, different from the aforementioned shear of
the pivot.
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Figure 6.29 A clear explanatory sequence which shows the moment of the first fracture, in the
pivot forecast by the model.

Figure 6.30 Plot of the shear angle. It is possible to use it for defining a rupture criterion based on
the pivot torsion.

mechanism also agree well with the measured force-displacement curve up to the
onset of fiber rupture (see Fig. 6.25).

Other methods useful to study damage occurring in pantographic structures can be
found in [60, 61].

6.4.2 Further Research: Optimization in Pantographic Structures

Utilizing the models developed in the previous chapter, we are able to forecast the
exact point of failure initiation within the pantographic structure. It is also possible
to postulate certain heuristic criteria to characterize the emergence and evolution of
damage, such as the relative displacement between two fibers of the two families in
correspondence of a pivot, torsion of the pivot, elongation of a fiber, and flexion of a
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fiber. These models and damage postulates can be combined to develop strategies for
optimizing the pantographic structure by changing some of its structural members and
their mechanical properties. Useful results in the field of optimization are reported in
[54, 55, 62, 63].

6.5 Validations via Image Correlation

Digital image correlation (DIC [17, 18]) can be used to quantify evolution of a displace-
ment field at the prescribed resolution of a deformed specimen. Recently, this technique
has been applied to extract the displacement fields as the pantograph is deformed in
experimental tests [19, 22]. For the pantographic structures, displacement fields can
be derived at macroscopic and mesoscopic scales. These displacement fields can then
be compared with those predicted via numerical simulations. By this comparison it is
possible to validate the constitutive model being considered.

6.5.1 Principle of Digital Image Correlation

DIC is based upon the analysis of digital images of surfaces at different stages of defor-
mation in experiments which aim to obtain a precise estimation of the deformations. One
of the limits of DIC comes from its ill-posedness. Generally, only limited information
is available from gray level images. For this reason, it is not possible to measure dis-
placement fluctuations beyond certain spatial resolution. Consequently, it is necessary
to find a compromise between the uncertainty level and the spatial resolution [23].
Unrefined descriptions of displacement fields based on discretizations coarser than the
scale of pixels are usually required. Additional information is necessary to achieve finer
resolutions. For example, it is possible to consider continuous displacement fields and
decompose them on convenient kinematic bases (e.g. finite element shape functions).
The calculation time is increased in this global approach, but the uncertainties can be
lowered [23].

Global DIC
The registration of two gray level images in the reference (f ) and deformed (g) config-
urations is based on the conservation of gray levels:

f (x) = g (x + u (x)) , (6.2)

where u is the (unknown) displacement field to be measured and x the position of pixels.
The sought displacement field minimizes the sum of squared differences 	2

c over the
region of interest (ROI),

	2
c =

∑
ROI

ϕ2
c(x), (6.3)

where ϕc defines the gray level residuals ϕc(x) = f (x) − g(x + u(x)) that are com-
puted at each pixel position x of the ROI. The minimization of 	2

c is a nonlinear and



286 F. dell’Isola, T. Lekszycki, M. Spagnuolo, et al.

ill-posed problem. This is the reason for considering a weak formulation in which the
displacement field is expressed over a chosen kinematic basis,

u(x) =
∑
n

unψn(x), (6.4)

where ψn are vector fields and un the associated degrees of freedom, which are gathered
in the column vector u. Thus the measurement problem consists in the minimization of
	2

c with respect to the unknown vector u. This problem is nonlinear and to obtain a
solution Newton’s iterative scheme can be implemented.

In the following analyses, the vector fields correspond to the shape functions of
3-noded triangular elements (i.e. T3 elements). Consequently, the unknown degrees of
freedom are the nodal displacements of the T3 elements.

Regularized DIC
The previous approach can be penalized when the image contrast is not sufficient to
achieve low spatial resolutions. This is, for instance, the case in the analyses reported
hereafter. Regularization techniques can then be selected [21]. They consist of adding
to the global correlation functional 	2

c penalty terms. In the following, a first penalty,
which is based on the local equilibrium gap, is added for the inner nodes of the finite
element mesh and those belonging to the free edges:

	2
m = {u}![K]![K]{u}, (6.5)

where [K] is the rectangular stiffness matrix restricted to the considered nodes. For the
other edges, a similar penalization is considered,

	2
b = {u}![L]![L]{u}, (6.6)

where [L] is a second operator acting on the nodal displacements of the boundaries that
are not traction-free [21].

The global residual to minimize then consists of the weighted sum of the previous
three functionals (i.e. 	2

c ,	2
m, and 	2

b). Because the dimensions of the first functional
are different from the other two, they need to be made dimensionless. It follows that the
penalization weights acting on 	2

m and 	2
b are proportional to a regularization length

raised to the power 4 [21]. The larger the regularization length, the more weight is put on
the penalty terms. This penalization acts as a low-pass mechanical filter, namely, all high
frequency components of the displacement field that are not mechanically admissible
are filtered out. Similarly, for low-contrast areas mechanical regularization provides the
displacement interpolation. The following analyses illustrate the benefit of using DIC to
measure displacement fields at the macroscopic and mesoscopic scales.

6.5.2 DIC Applied to Pantographic Structures

As an example of the application of DIC to a pantographic structure, we discuss here
the analysis of a BIAS extension test presented earlier in this section (see Fig. 6.15).
A series of 55 images were analyzed for the deformation range in which no damage
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Figure 6.31 Gray level images of the pantograph in the reference configuration (a), 17th (b),
34th (c) and 51st (d) loading steps

Figure 6.32 Finite element meshes overlaid with the gray level picture of the reference
configuration.

was observed. Figure 6.31 shows the images of the initial configuration, and three
loaded configurations corresponding to the 17th, 34th, and 51st studied steps. In the
present case, the pivots of the pantograph were marked in black, and a random pattern
was created by spraying black and white paint on the grips. The fact that the grips
were patterned contributes to the convergence of the DIC code even though very large
displacement levels occur during the experiment.

Macro- and meso-scale analyses are reported below. For macroscale analyses, the
rectangular region of interest was meshed with T3 elements independently of the under-
lying mesostructure. Four different mesh densities are considered (Fig. 6.32a–d). The
characteristic mesh size, which is defined as the square root of the average element
surface, is equal to 28 pixels for the first mesh, 13 pixels for the second one, 8 pixels for
the third one, and 6 pixels for the last. These four meshes are utilized for convergence
analyses of the DIC results at the macroscale.
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Figure 6.33 The back-tracking procedure. Initial mesh (a) and corresponding mask (b).
(c) Reference picture and mesh used to register the mask. (d) Overlay of back-tracked mesh and
reference picture.

Two additional meshes are tailored to the pantograph mesostructure (Fig. 6.32
e and f)). The starting point is the nominal geometry of the pantograph, which would
be used, say, in FE simulations. From this information, the mesh has been created
with Gmsh [20] (Fig. 6.33a) and a picture of the corresponding mask (Fig. 6.33b). A
DIC analysis was performed between the reference picture and the mask to deform it
so that the mesh can be backtracked onto the actual pantograph surface. In such an
analysis, an auxiliary (coarse) mesh has been used (Fig. 6.33c). Once the DIC analysis
converged, the original mesh was consistent with the actual geometry of the pantograph
(Fig. 6.33d).

This back-tracking procedure has been applied to two meshes (Fig. 6.33a–d). The
corresponding characteristic mesh size is equal to 3.7 and 3.6 pixels, respectively. It
is worth noting that such discretizations can only be considered as a consequence of
regularization techniques since the correlation length of the pantographic structure is of
the order of 10 pixels.

In global DIC, the registration quality is assessed with gray level residual fields, which
correspond to the pixel-wise gray level difference between the picture in the reference
configuration and the picture in the deformed configuration corrected by the measured
displacement. The quantity to be minimized is the L2-norm of the gray level resid-
uals over the region of interest [18]. The root mean square (RMS) level is reported in
Fig. 6.34 for all six meshes considered herein. The first general tendency is that the regis-
tration quality degrades as more steps are analyzed, thereby signaling that the measured
fields become increasingly complex as the loading progresses (Fig. 6.31). Second, there
is a significant difference between the first four meshes and the last two. This proves
that meshes tailored to the actual pantograph surface better capture the kinematics of
the test, even with the same regularization length as for coarser meshes. Third, in both
cases, a converged solution is obtained in terms of mesh density with respect to the
chosen regularization length. More precisely, meshes 3 and 4 at the macroscale, meshes
5 and 6 at the mesoscale have the same residual levels. Consequently, there is no need
to further refine the discretization with the chosen regularization length.
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Figure 6.34 RMS gray level residual as functions of the picture number for the six meshes shown
in Fig. 6.32.

Figure 6.35 Longitudinal (a-c) and transverse (b-d) displacement fields measured with meshes
4 (a-b) and 6 (c-d) for the 14th picture. The fields are shown on the deformed configuration.

In the following discussion, only two sets of results are reported, namely, those of
meshes 4 (at the macroscale) and 6 (at the mesoscale). Figure 6.35 shows the lon-
gitudinal and transverse displacements measured for the 14th picture. The transverse
displacement field ux shows a very important contraction, which is of the same order of
magnitude as the longitudinal motions uy . Since the width of the sample is one third of
its length, the transverse deformations are much more important than the longitudinal
component. This observation applies to both scales. In the present case, both measure-
ments have approximately the same quality in terms of overall registration residuals
(Fig. 6.34).

In Fig. 6.36 the same fields are shown for the 34th picture. The main features of
the transverse and longitudinal displacement fields are identical to the previous step,
yet with higher overall levels. The displacement ranges are still of the same order of
magnitude for the longitudinal and transverse displacements. Consequently the central
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Figure 6.36 Longitudinal (a-c) and transverse (b-d) displacement fields measured with meshes
3 (a-b) and 4 (c-d) for the 34th picture. The fields are shown on the deformed configuration.

Figure 6.37 Longitudinal (a-c) and transverse (b-d) displacement fields measured with meshes 3
(a-b) and 4 (c-d) for the 51st picture. The fields are shown on the deformed configuration.

part of the sample is thinner. The deformed shapes are very close for both meshes, which
translates into the same levels of registration residuals (Fig. 6.34).

One of the last steps is reported in Fig. 6.37. In this case the gray level residuals
(Fig. 6.34) are significantly higher for mesh 4 (at the macroscopic scale) in comparison
with mesh 6 (at the mesoscopic scale). There is a clear difference in the deformed shape
whose width is lower for the mesoscopic analysis in comparison with the macroscopic
result. The highly deformed region has grown toward both ends of the pantographic
sheet, which can be understood by the fact that when struts touch each other, the defor-
mation mechanisms can be completely altered and the consequent behavior changes in
a dramatic manner.

The results reported herein confirm that DIC analyses can be applied to pantographic
structures at macroscopic scales [19] and mesoscopic levels with regularized DIC on
very fine meshes (i.e. down to 3.6 pixel elements). Important gains were observed in
terms of registration quality by moving from the macroscopic to the mesoscopic scale
(i.e. more than a factor of one and a half at the end of the picture series). The final gray
level residuals indicate that even more advanced approaches should be adopted. It must
be remarked here though that due to the nature of DIC, which relies only upon images
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from the surface of the object, the effect of pivots, which are subsurface and hidden in
the images, upon the kinematics cannot be directly evaluated.

6.6 Conclusion

Pantographic metamaterial is a concept that is founded upon a physical theory. To
verify and validate the physical theory it is essential to realize the predicted structure
and subject it to experimental tests. This chapter has dealt with experimental evidence
and technological challenges regarding pantographic metamaterials. Such issues are
forerunners of those that must be confronted by all types of metamaterials regardless
of their working principles [29, 30, 69, 70]. It is clear that a transdisciplinary approach
must be employed to address these challenges successfully. Indeed, robust experimental
verification of theoretical predictions has been possible only due to the diligent efforts
in coordinating the different aspects of the investigations. It has been shown that CAD
modeling and 3D printing are not only powerful tools for rapid prototyping, but indis-
pensable for metamaterial development, as are the predictive theories. Moreover, an
important improvement in developing and validating theories is to be researched in
numerical simulations. Finite element methods nowadays make it possible to clarify the
modelized phenomena and to calibrate the mechanical tests needed to validate the mod-
els involved. Some useful examples of numerical tools developed for metamaterials are
reported in [33–41, 79, 80]. Theoretical models have guided the design of experiments
and they have led to clear conclusions about further changes to be adopted in order to
improve the gap between modeling and reality. In particular, pantographic Metamaterial
constitutes the most clear and simple example of a second gradient material. Some
homogenization procedures useful in finding a continuum model describing it can be
found in [42, 42, 44–47, 56–59]. More general mathemathical methods useful in this
context are reported in [71–75, 77, 78]. DIC techniques have proved useful in measuring
deformation fields inexpensively as a post-processing step. A possible new challenge to
face in the study of pantographic metamaterial consists in developing models to describe
a composite fiber reinforced material, whose fibers are arranged in a pantographic-like
network. Preliminary results about alignments of fibers embedded in a softer matrix
are reported in [48, 53]. Many results about the different homogenisation techniques
needed to develop similar models can be found in [49–52]. Pantographic structures show
large deformations also remaining in the elastic stage. Another challenging problem
is to study the effect of the pantographic microstructure (and its large deformations)
coupled with some exotic material properties. For example, an interesting coupling
could be arranged with memory alloys, whose mechanical properties are reported in
[65–68]. Material science has played an important role as well in understanding how
the manufacturing process affects the crystalline and granular properties of printed
aluminum, polyamide and steel. The results of these last investigations will guide the
choice of the manufacturing process parameters like bed temperature, laser temperature,
specimen arrangement inside the bed, powder composition, powder treatment, cooling
time, etc. In conclusion, experimental investigation of pantographic metamaterials is an
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active area of research which will involve ever more specialists, resulting in a general
advancement of all the disciplines involved. Such research output will certainly have a
relevant impact also in the testing and manufacturing of current metamaterials as well
as of those which have not been invented yet.
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7 Variational Methods as Versatile
Tools in Multidisciplinary Modeling
and Computation
U. Andreaus, I. Giorgio

7.1 Variational Principles: A Powerful Tool

Variational approaches have proven successful in the analysis of many systems, e.g.
economic, engineering, social, biological, as well as being elegant from a theoretical
point of view [1–8].

Variational methods and principles, after their birth in the Hellenistic age and their
subsequent developments by Euler and Lagrange, are experiencing a sort of revival
thanks to the new developments of numerical techniques based on stationarity prin-
ciples, like the finite element method (FEM) [83–89]. Such techniques benefit from a
variational formulation of the model to be solved: energy methods, beyond their wide
use in obtaining estimates and bounds aimed at proving well-posedness for a broad class
of PDEs and in formulating field theories [9], are thus of major practical importance as
they also allow for an effective numerics.

On the other hand, variational principles are sometimes considered by numerical
analysts working in FEM as nothing but an efficient tool, rather than a fundamental
concept in model formulation: a common approach is to derive the weak form, the
one giving, after a sort of discretization of the field variables, the algebraic system
to be finally solved, starting from the strong form, i.e. the PDEs. In this regard, it
is noteworthy that there is no reason why one should believe that models are more
‘naturally’ (whatever this means) formulated using PDEs rather than in terms of an
action functional. Very often, by means of an energy principle, it is possible to derive
the same weak form obtained starting from the strong form PDEs. Usually, when this
is not possible, the theory could be affected by serious problems. Furthermore, the
availability of rigorous theorems about existence and, possibly, uniqueness of a weak
solution makes it possible to establish convergence of the finite element method to the
solution. Hence, it not unreasonable to state that sound numerics can be done when
well-posedness results are available, in order not to proceed blindly in a sort of terra
incognita. It is clear that, without resorting to a (well-behaving) energy functional, it
is unlikely (and generally false) that a well-posedness result can be achieved. When a
weak form is derived without an underlying energy functional, by means of more or less
licit integrations by parts, it is of course possible to obtain some results: unfortunately,
often, they are meaningless or, at least, controversial ones.

The modeller usually faces challenges coming from the description of phenomena
which involve a great variety of features: elastic macroscopic deformations related
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to microscopic complex mechanisms, dissipation due to damaging, plasticity, friction,
electro-mechanical or other multi-physical couplings. A good part of the efforts involved
in the modelling of these phenomena, which should not be considered inclusive of all
the physical situations which can be addressed by the method we are going to present,
can be effectively exemplified by referring to recent approaches to three-different
branches of applied sciences, in which the use of variational methods has proven useful.
We are referring to: a) some applications in the field of biomechanics, where a relevant
problem which needs to be addressed is the one of studying and describing the functional
adaptation of bone tissue interacting with a graft of bio-resorbable artificial material
under mechanical loading; b) the problem of modelling dissipation of mechanical
energy, addressed by considering some kind of internal friction mechanism; and c) the
problem of vibration damping, which can be addressed by coupling a lightweight
structural element with a multi-terminal electrical network by means of piezoelectric
transducers.

7.2 Applications in Biomechanics

In order to address the problem of studying the interaction between living bone tissue
and a tissue which has been reconstructed by means of an artificial bio-resorbable
material, we consider a body which is made up of a mixture composed of three phases:
the binary solid porous matrix of bone and bio-resorbable material, and the fluid phase
that fills the connected pores of the solid matrix, i.e. bone marrow, blood and interstitial
fluid. At an initial stage, there are two distinct zones characterized, respectively, by
the presence of bone tissue and bio-material only (see e.g. Fig. 7.1). Afterwards, the
remodelling process, which is driven by an external mechanical excitation, promotes the
bone growth inside the graft. Indeed, it is only in the graft region that the three-phase
mixture can be found, while in the bone area a simpler two-phase mixture is present
because, clearly, the bio-resorbable material remains confined in the initial zone and,
possibly, it is resorbed. The shape of the body in its undeformed reference configuration

Figure 7.1 Representation of a bone sample reconstructed with a graft of bio-resorbable material
in its initial configuration under a cyclic lineal load with a linear distribution.
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is represented by the subset B0 of a Euclidean space E. We are not going to make use
of a so-called mixture model in a strict sense, since we are not going to consider as
independent kinematical descriptors of the model placement functions for each com-
ponent of the mixture. The only displacement field u(X, t), with χ(X) = X + u(X)
being the corresponding placement function, which we consider as an independent
Lagrangian kinematic variable, is assumed to be the displacement of the barycenter X of
the representative elementary volume (REV) of the solid binary mixture. Nevertheless,
in order to take into account the porous nature of the system, we introduce a further
micro-kinematical descriptor φ, which is the Lagrangian representation of the porosity
of the body in the current configuration, while φ∗ is the porosity of the body in the
reference configuration.

Clearly, when approaching the description of a real system, it is of crucial importance
to decide the physical observed quantities and the observed length scale as, according
to these choices, the same system can be modelled in many different ways. In order to
stress this fact we will present three different possible continuum mechanics approaches
to bone mechanics and remodelling. The reason why we decided to present these exam-
ples will be self-explanatory: variational principles allow us to deal synthetically with
different models within the same conceptual framework.

We start by describing the first approach. It is based upon the energy density pro-
posed by Biot, which is classical in poromechanics. In order to do so, we introduce the
deformation measures of the model. Specifically, for the solid phase we define the strain
tensor εij(X, t) as follows

εij(X, t) = 1

2

(
ui,j + uj,i

)
. (7.1)

The micro-deformation of pores is described by means of the change, between the
reference and the current configurations, of the effective volume of the fluid content
per unit volume of the body. In algebraic expressions, we have

ζ(X, t) = φ(χ(X, t), t)− φ∗(X, t). (7.2)

According to mixture theory, these porosities can be expressed as

φ = 1− (ρb/ρ̂b + ρm/ρ̂m), φ∗ = 1− (ρ∗b/ρ̂b + ρ∗m/ρ̂m), (7.3)

where ρb and ρm are the apparent mass densities of bone tissue and artificial material,
respectively; the hat symbol denotes the true densities, while the superscript * indicates
all quantities in the reference configuration.

Following the classical papers [10, 11], one of the simplest choices for the poten-
tial energy-density is the following purely quadratic function of the deformation
measures[12]:

WB = 1

2
λ εhhεkk + μ εijεij + 1

2
K1ζ

2 + 1

2
K2ζ,iζ,i −K3 ζ εii, (7.4)

where λ and μ are the Lamé parameters and the coupling between the two sets of state
variables is given by the mixed term K3 ζ εii. Note that the potential energy density
in Eq. (7.4) depends upon the first gradient of the internal variable representing the
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porosity. Resulting from this, relying on a variational framework, we are able to encode
into the model external actions on pores at the boundary, e.g. fluid pressure, by means
of Dirichlet boundary conditions and/or their dual contributions. We postulate the fol-
lowing dependencies for the Lamé parameters:

λ = ν Y (ρ∗b, ρ∗m)

(1+ ν)(1− 2ν)
, μ = Y (ρ∗b, ρ∗m)

2(1+ ν)
, (7.5)

and we assume the Young’s modulus of the mixture to be given by

Y = Y Max
b

(
ρ∗b/ρ̂b

)2 + Y Max
m

(
ρ∗m/ρ̂m

)2, (7.6)

Y Max
b and Y Max

m being the maximal elastic moduli of bone tissue and of the resorbable
material, respectively. In a first analysis, it is reasonable to assume Poisson’s ratio ν

to be not dependent upon the volume fractions of mixture constituents in the reference
configuration. We relate the coefficient K1, which is a measure of the compressibility
of bone marrow inside the pores, with the stiffness of marrow Kf and with the bulk
modulus of the drained porous matrix Kdr = Y/(3(1− 2ν)). Thus, we assume that

K1 =
(
φ∗

Kf
+ (αB − φ∗)(1− αB )

Kdr

)−1

, (7.7)

where αB is the Biot–Willis coefficient. The parameter K2 is a stiffness related to the
gradient of porosity and, hence, to interaction phenomena among neighboring pores.
With regard to the stiffness related to the contribution coupling the microstructure and
the solid bulk, we assumed that

K3 =
√

ĝ(φ∗)λK1, ĝ(φ∗) ∈ [0, 1), (7.8)

where the weight

ĝ(φ∗) = A0

π

{
atan

[
s0

(
φ∗ − 1

2

)]
+ atan

( s0

2

)}
(7.9)

is a monotonically increasing function depending on the reference porosity which mod-
ulates the micro–macro coupling. The choice of (7.8) is motivated by a well-known
result in consolidation theory. It is indeed possible to prove that [13], unlike the second
Lamé parameter, the effective first Lamé parameter λeq of the porous medium is affected
by the porosity and is expressed as

λeq =
[
λ− (K3)2

K1

]
= λ− λv . (7.10)

Indeed, thermodynamics rules that the effective first Lamé parameter must be less than
the one related to the homogeneous material and, thus, it is possible to express it as in
Eq. (7.8).

In order to handle dissipation inside the body, we adopt a Rayleigh–Hamilton gen-
eralized virtual work principle and, accordingly, we introduce the following dissipa-
tion functions aimed at describing the main different phenomena occurring. Solid-fluid
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friction is to be modelled by means of a dissipation function including so-called Darcy’s
and Brinkman’s contributions [14]:

2DDB (ẇ,∇ẇ) = KDẇ · ẇ+KB∇ẇ : ∇ẇ, (7.11)

with w = φ(U − u) being U the average fluid displacement, i.e. the volume flow vector
of the fluid relative to the solid, KD and KB are, respectively, the Darcy second order and
the Brinkman fourth order permeability tensors. For the particular case of an isotropic
medium, these two tensors are reduced to two positive scalar constants. Specifically, the
vector w is assumed to be the gradient of a scalar function ξ and, therefore, it is given
by the mass balance for nonhomogeneous porosity as follows:

ζ = −∇ · w = −∇ · (∇ξ). (7.12)

We assume the following Neumann boundary condition,

w · n = a(X, t) on ∂B, (7.13)

where n denotes the unit normal vector to the boundary ∂B and, therefore, a is the
normal component of w prescribed on the same boundary. In addition, a Rayleigh dissi-
pation function related to the solid-matrix macroscopic strain rate is given by

2Ds(ε̇ij) = 2μv
(
ε̇ijε̇ij − 1

3
ε̇iiε̇jj

)
+ κv ε̇iiε̇jj, (7.14)

with κv and μv being the bulk and shear viscosity coefficients, respectively. Moreover,
the dissipative potential related to the micro-deformation ζ can be introduced as

2Dζ (ζ̇) = Kζ ζ̇
2, (7.15)

where Kζ is a positive damping coefficient. The extended Rayleigh–Hamilton principle
of virtual work, including dissipation effects and neglecting inertia terms, states that, for
arbitrary variations δui and δζ

−
ˆ
B
δWB +

ˆ
B
δW ext =

ˆ
B

(
∂Ds

∂ε̇ij
δεij +

∂Dζ

∂ζ̇
δζ + ∂DDB

∂ξ̇,k
δξ,k + ∂DDB

∂ξ̇,ki
δξ,ki

)
,

(7.16)

where δW ext is the first variation of the work done by external actions on kinematically
admissible variations, i.e.,

δW ext =
ˆ
∂τ B

τiδuidS +
ˆ
∂B

Z δζdS, (7.17)

where τi is the surface traction on the boundary, and Z is a microstructural action which
describes the local dilational behaviour of a porous material induced by pore opening
and capillary interaction phenomena among neighbouring pores.

We now turn to the presentation of another approach to bone remodelling within the
variational setting employed in this chapter [15–18]. We consider a Cosserat continuum,
which, in the words of the notable mechanician R. D. Mindlin is characterized by the
property that: At each point of a Cosserat continuum there is a micro-structure which
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can rotate with respect to the surrounding medium [19]. This entails that a Cosserat
continuum possesses an augmented kinematics as, in addition to the standard placement
function of each material point of the body, it is endowed with a micro-rotation described
by a skew-symmetric tensor. As we are considering a material which shows a phe-
nomenology strongly related to its porosity, another kinematic parameter, the porosity,
must be added as before. In the elastic case, the potential energy density is expressed
as a quadratic function of the strain measures. In the framework of the small strain
hypothesis, we define the coupling strain measure γij as follows:

γij(X, t) = u[j,i] − ψij, (7.18)

with ψij being the skew-symmetric micro-structure rotation tensor and u[j,i] the lin-
earized macro-rotation in the polar decomposition of the deformation gradient

u[j,i] = 1

2

(
uj,i − ui,j

)
. (7.19)

We now introduce the micro-rotation gradient

κi[jk](X, t) = ψjk,i. (7.20)

Hence, the potential energy-density reads as

WC = 1

2
λ εhhεkk + μ εijεij + βγijγij + α1 κi[ik]κj[kj] + α2 κi[jk]κi[jk] + α3 κi[jk]κj[ki]

+ 1

2
K1ζ

2 + 1

2
K2ζ,iζ,i −K3 ζ εii, (7.21)

while the dissipation energy function is assumed to be the same as that in Eqs. (7.11),
(7.14) and (7.15). The external virtual work is given by:

δW ext =
ˆ
∂τ B

τiδuidS +
ˆ
∂τ B


jkδψjkdS +
ˆ
∂B

Z δζdS. (7.22)

We notice that 
jk in the second term of Eq. (7.22) can be interpreted as a micro-couple.
The extended Rayleigh–Hamilton principle of virtual work in this case is also given by
Eq. (7.16).

As we mentioned before, it is well-understood that, at a certain length scale
(∼ 200 μm), bone tissue can be schematized as a three-dimensional porous network
of interconnected trabeculae (cancellous bone). It is for this reason that, previously,
we dealt with the modelling of bone tissue by endowing nodes of such a network with
rotational degrees of freedom by using Cosserat theory. Nevertheless, it is possible to
look at bone tissue at the same length scale as a quasi-periodic system of cylindroid
structures, i.e. osteons (cortical bone), characterized by a marked contrast in mechanical
properties between bending and extension. On the basis of this observation and noting
that local bending in micro-structured materials can be modelled macroscopically by
means of strain gradient theories [20, 91–93, 97], it is possible to model bone tissue
mechanics by complementing the classical framework of poromechanics [10] and [11]
by means of the theory of the second gradient continua developed by [21] and [22]). In
the simplest case a potential energy-density (potential energy per unit of macro-volume)
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which is homogeneous, quadratic in the variables ε, ∇ε, ζ and ∇ζ [20, 23, 24] can be
written as

WII = 1

2
λ εiiεjj + μ εijεij

+ 4α1εii,jεjk,k + α2εii,jεkk,j + 4α3εij,iεkj,k + 2α4εij,kεij,k + 4α5εij,kεik,j

+ 1

2
K1ζ

2 + 1

2
K2ζ,iζ,i −K3 ζ εii. (7.23)

The second gradient stiffness coefficients are assumed to be:

α1 = α2 = α4 = Y (ρ∗b, ρ∗m)�2, α3 = 2 Y (ρ∗b, ρ∗m)�2,

α5 = 1/2 Y (ρ∗b, ρ∗m)�2, (7.24)

where � is a suitable scale length of the microstructure, which is related to the diameter
of trabeculae or osteons.

In this framework, the virtual external work is given by

δW ext =
ˆ
∂τ B

τiδuidS +
ˆ
∂τ B

Tαδuα,jnjdS +
ˆ
∂B

Z δζdS, (7.25)

where Tα is the external double force field which is acting on the boundary of the body.
At the interface between two jointed regions, for all the models we have considered

so far, the following extra boundary terms are added to the energy density (7.23):

Eint = 1

2
Kζ [[ζ]]2 + 1

2
Ku [[u]] · [[u]], (7.26)

where Kζ and Ku, respectively, define elastic interactions due to the jump in the fields
of ζ and u for the two different jointed regions. The symbol [[·]] stands for the jump of
any field f (X) through the interface, i.e. [[f ]] = (f+ − f−).

The evolution of the apparent mass densities is given by the distributed system of
ordinary differential equations [13, 25]:{

ρ̇∗b = Ab (S) H (φ) with 0 < ρ∗b � ρ̂b

ρ̇∗m = Am (S) H (φ) with 0 < ρ∗m � ρ∗m(X, 0).
(7.27)

We note that the right-hand side of (7.27) depends upon the mechanical stimulus S

resulting from an external applied load and the current porosity φ, while the functions
Ab and Am are taken to be

A{b,m} (S) =
{

s{b,m}S for S ≥ 0
r{b,m}S for S < 0,

(7.28)

with different constant rates for synthesis (sb and sm = 0) and for resorption (rb and
rm). The weight function H modulates the efficiency of the remodelling process in
accordance with experimental evidence, which suggests considering a ∩-like shape for
H , which attains its maximum in a neighbourhood of φ = 0.5. In the definition of
the stimulus, the presence of a lazy zone, bounded by two thresholds (P s

ref
and P r

ref
for
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synthesis and for resorption, respectively), is taken into account, as in the lazy zone the
osteoregulatory balance of the bone is kept. Algebraically, we have

S(X, t) =

⎧⎪⎪⎨
⎪⎪⎩

P (X, t)− P s
ref

for P (X, t) > P s
ref

0 for P r
ref

� P (X, t) � P s
ref

P (X, t)− P r
ref

for P (X, t) < P r
ref

,

(7.29)

where the signal P is related to the sensor cells activity, assumed to be transmitted
instantaneously and to be expressed by means of the following convolution integral [12]:

P (X, t) =
´
B (a Es(X0) + b Ds(X0)) �

(
ρ∗b(X0)

)
e
−‖X−X0‖2

2D2 dX0

´
B e

−‖X−X0‖2
2D2 dX0

(7.30)

characterized by a reference length D, which is a cut-off of the range of influence of the
biological processes. The quantity Es is the density of strain energy of the solid matrix
and � is the density of active sensor cells (osteocytes), which are assumed to be present
only in living bone tissue. The functional dependence of � upon ρ∗b is assumed to be:

�
(
ρ∗b
) = η tanh(ξ ρ∗b) 0 < η � 1, (7.31)

where the hyperbolic tangent function is used to consider saturation of the living bone
matrix. Note that the quantity � can be interpreted, in the framework of feedback control
theory [26, 27], as a gain for the actual mechanical stimulus, i.e. ‘the actuating signal’,
that takes the real activities of the osteocytes into account [28]. For a similar approach
in modelling the stimulus see e.g. [29, 30]. The remodelling process can change dra-
matically depending on the mechanical properties of the microstructure of the bone
tissue and of the artificial graft. Indeed, considering the very simple case sketched in
Fig. 7.1 and using the extended Rayleigh–Hamilton principle of virtual work involving
the constitutive Eq. (7.23) combined with the evolutionary rules (7.27), it is clear from
Fig. 7.2 how the characteristic length � affects the time evolution and consequently
the final distribution of both the mass density of bone and of bio-material [31]. We
also note that, when � is zero, the second gradient model used turns out to be a Biot’s
model, which can be considered, roughly speaking, as a sort of reference model. All
the models that we have considered so far can describe a particular behaviour in the
remodelling process of bone tissue, possibly reconstructed with an implant made up of
bio-resorbable material. Therefore, the wise judgment of the researcher should always
guide their choice case by case, depending on the particular architecture and geometry
of the microstructure. For example, if the thickness of the trabeculae is too large with
respect to their length, the elastic energy stored in their bending deformation is negli-
gible and, hence, a Biot’s model is suitable for a proper description. On the other hand,
if the slenderness ratio of the trabeculae is high, the amount of elastic energy needed
for their bending is significant and, for this reason, a second gradient model should be
employed. Moreover, if the nodes in which trabeculae connect are very thick, they can
be considered in a first approximation as rigid objects surrounded by a medium which
can store elastic energy. In this last case, a Cosserat’s model could be more appropriate.
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Figure 7.2 History of the mass densities of bone tissue (dashed line) and bio-resorbable material
(solid line) in the probe point Pm for different values of the characteristic length � normalized
with respect to the length of the sample, i.e. � = 0, 0.05, 0.1.

7.3 Applications in Materials Science

The variational approach proved to be useful also in improving the damping perfor-
mance of materials with penny-shaped cracks, like concrete (with or without additives
[32, 33]). Here, we present a modelling approach which is aimed at describing the mech-
anism of internal dissipation associated with Coulomb friction in brittle materials, which
are naturally characterized by a network of micro-cracks. Other dissipation mechanisms,
as might be expected, can be approached with a variational framework, and for the sake
of completeness, we mention here [34, 35, 94–96, 98] to cover visco-plastic models. As
a Coulomb friction approach, similarly to the others presented in this chapter, is based
on continuum mechanics, kinematic descriptors representing the displacement of a REV
are considered. We now address the description of microstructural properties of such
materials. When no relevant damage phenomena occur at the macroscopic level, and the
statistical distribution of micro-crack orientation in a REV can be satisfactorily consid-
ered to be uniform, the effect of such micro-cracks can be accounted for effectively by
introducing the micro-kinematical variable ϕ, which stands, roughly speaking, for an
average sliding (relative) displacement between the opposite faces of the micro-cracks
coming into contact [36, 37]. Note that, for isotropy reasons, the variable ϕ is a scalar
quantity. As the kinematic variables have been defined, we now turn to the definition of
the volume strain energy density 
. It is postulated to have the following form:
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 (E,ϕ) = 1

2

(
2μE ·E + λ (tr E)2

)
+ 1

2
α

(√
I

(d)
2 − ϕ

)2

+ 1

2
k1ϕ

2 + 1

3
k2ϕ

3 + 1

4
k3ϕ

4, (7.32)

where λ and μ are the Lamé parameters for linearly elastic isotropic materials, E is
the small strain tensor and the scalar I (d)

2
is the second invariant of the deviatoric strain

tensor dev E = E − 1
3 tr E 1, defined as I (d)

2
= 1

2 tr (dev E devE). The dependence
in (7.32) of the volume strain energy density upon the micro-kinematic parameter ϕ

has been assumed to be non-quadratic [38]. This choice can be justified on the basis of
experimental evidence. The kinetic energy density is defined by

K = 1

2
ρ u̇2 + 1

2
ρϕ ϕ̇2, (7.33)

where ρ is the mass density of bulk material and ρϕ is an effective macroscopic mass
density linked to the microstructural variable ϕ. In this context, a Rayleigh potential
R, aimed at describing a regularized Coulomb-type friction dissipation is introduced as
follows:

R = ζ trE
1

η
ln(cosh( η ϕ̇ )), (7.34)

where ζ and η are constitutive constants. The virtual work due to internal dissipation is

δW
(Dis)

(E,ϕ, ϕ̇) =
ˆ T

0

ˆ
V

(
∂R
∂ϕ̇

δϕ

)
dV =

ˆ T

0

ˆ
V

ζ tr E tanh( η ϕ̇ ) δϕ dV ,

where [0, T ] is the time interval considered. It is worth noting that the term
ζ tr E tanh( η ϕ̇ ) can be interpreted as an internal friction force density, which is
proportional to the normal contact action σn. Hence, we can express ζ tr E as �μkσn,
assuming ζ = �μkK . Indeed, σn can be evaluated as Ktr E, where K is the bulk
modulus, μk the friction coefficient and � the surface area of microcracks per
unit volume of concrete. The function tanh(·), instead of the usual sign function, is
introduced to smooth the term at low velocity range. The parameter η, being the slope
of the hyperbolic tangent at zero, can be used to modulate the extension of the smoothed
zone. The weak form equation governing the evolution of the system is the following:

−
ˆ T

0

ˆ
V

δ
 dV +
ˆ T

0

ˆ
V

δK dV +
ˆ T

0

ˆ
S

τ ext · δu dS = δW
(Dis)

, (7.35)

where τ ext are the externally applied forces per unit area. Note that there is a good
agreement between the results of experimental tests and those of numerical simulations.
This is clear when, for instance, a dissipation loop obtained with a cyclic external load at
a frequency of 1 Hz is considered for the experimental setup (see [39] and Figs. 7.3 and
7.4). Note that the composition of concrete strongly affects its dissipative behaviour.
Indeed, after a suitable optimisation of the additives (shape, quantity and mechanical
properties), the area of the region included within the loops in Figs. 7.3 and 7.4 related to
the enriched concrete samples approximately doubles with respect to the corresponding
area of that for standard concrete.
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Figure 7.3 Dissipation loops for M32 grade concrete: standard (left); enriched (right).
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Figure 7.4 Dissipation loops for M52 grade concrete: standard (left); enriched (right).

7.4 Applications in Vibration Damping

In many engineering applications, the employment of increasingly thin structures has
given rise to several issues regarding vibration and noise emission. Therefore, a crit-
ical problem has emerged, which is the design of mechanical systems endowed with
an efficient means of controlling structural vibrations, in order to ensure reliability,
by reducing fatigue loads, crack propagation and damage. In this context, the use of
piezoelectric transducers appears to be an attractive opportunity. Indeed, many ‘smart’
devices (or materials) incorporating these special materials as sensing and actuating
mechanisms are being studied in literature. For example, the use of piezoelectric mate-
rials has expanded greatly in the field of structural control and health monitoring (on
this topic the literature is huge, see, e.g. [40–42] for an overview, [43–46, 82, 90] for
some applications on beams, [47–50] on plates, [51–54] for some aspects of modelling).
This is primarily due to the desirable piezoelectric properties, but also to the growing
availability of more efficient piezoelectric ceramics.
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Mechanical thin structures such as beams or shells equipped with piezoelectric trans-
ducers can be regarded as metamaterials [55] whose configuration is described by a
displacement field and an additional kinematic variable, which is usually an electric
quantity, like charge or voltage. Generally, a metamaterial can be conceived as a material
designed in order to exhibit some tailored exotic features. To this end, it is characterized
by a microstructure or other features – here the piezoelectric elements – which determine
a non-standard behaviour. In other words, such materials can be described by means of
generalized continua. The basic working principle of materials fitted with piezoelectric
transducers is very simple. Indeed, the piezoelectric transducers transform mechanical
into electrical energy, which is then conveyed to an electric device, whose properties
are designed to attain a desired behaviour. For instance, the system could be designed to
have as its main purpose the reduction of vibration or noise emission at the maximum
possible rate (see e.g. [56–59]).

Here, we consider a beam with a rectangular cross-section of height h and width b,
and having length L. Let C∗ be the reference configuration of a piezoelectric beam,
a reference frame (O, x1, x2) is chosen so that C∗ is coincident with the segment
x1, such that 0 � x1 � L and the origin O is at the centre of the cross-section.
Repetitions of pairs of piezoelectric patches are arranged such that two piezoelectric
elements belonging to the same pair are bonded on the beam to implement the proposed
control technique. For the sake of simplicity, we locate only one pair of piezoelectric
patches of width b – the same as the beam – and thickness hp between the endpoints
x1,i and x1,f . This pair of piezoelectric transducers is made up of two identical thin
slices glued symmetrically onto two opposite faces, i.e. upper and lower (see Fig. 7.8),
of the host beam and connected in parallel; they are bonded with inverted polarisation
directions, in order to produce opposite elongation and, thus, to induce pure bending
deformations.

In this way, the actual configuration can be described, from a mechanical point
of view, by the transverse displacement v(x1, t), while the descriptor for the electric
behaviour is the electric field vector E. Hence, following the approach of [60], to
describe the piezoelectric beam we assume the Lagrangian function per unit length to
be [61, 62]

L = 1

2
ρv̇2 −H (Sij , Ei), (7.36)

where H is the electric enthalpy density [63], which depends on the small strain tensor
Sij and the electric field Ei . In particular, it can be expressed as

H (S11, E2) = 1

2
kE
mS2

11 − kmeS11E2 − 1

2
kS
e E2

2 . (7.37)

The constitutive parameters in (7.37) are

kE
m = YE

p , kme = YE
p d21, kS

e = εS2 = εT2 − YE
p d2

21, (7.38)

where YE
p is the Young’s modulus of the piezoelectric material under short circuit con-

dition (refer to the superscript E), d21 the piezoelectric constant with polarisation along
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the x2-direction and εS2 the dielectric constant for the null deformation. Furthermore,
the parameter εT2 is the dielectric constant under free stress conditions (refer to the
superscript T ). It is possible to consider more refined models; for instance, one can
consider the piezoelectric material to exhibit anisotropic behaviour [64, 65], non-linear
effects due to hysteresis or memory effects [66–68]. The constitutive relations for the
only significant components of the stress tensor T and the electric displacement vector
D, from Eq. (7.37), are given by

T11 = ∂H

∂S11
= kE

mS11 − kmeE2, (7.39)

D2 = − ∂H

∂E2
= kmeS11 + kS

e E2, (7.40)

In the framework of the linear theory of piezoelectricity, considering linear elastic defor-
mations and the quasi-static electric field approximation, we have

S11 = −x2v
′′, E2 = −φ,2, (7.41)

where φ is the electric potential. By substituting these assumptions (7.41) in Eq. (7.36),
the Lagrangian L can be computed as

L(v, φ) = b

ˆ L

0

ˆ h
2

− h
2

1

2
ρbv̇

2dx1dx2 + 2b

ˆ x1,f

x1,i

ˆ h
2+hp

h
2

1

2
ρp v̇

2dx1dx2

− b

ˆ L

0

ˆ h
2

− h
2

1

2
Yb (x2v

′′)2dx1dx2 − 2b

ˆ x1,f

x1,i

ˆ h
2+hp

h
2

1

2
kE
m (x2v

′′)2dx1dx2

+ 2b

ˆ x1,f

x1,i

ˆ h
2+hp

h
2

[
kmex2φ,2v

′′ + 1

2
kS
e

(
φ,2
)2
]

dx1dx2. (7.42)

By computing the first variation of the last term of Eq. (7.42), we obtain the electrostatic
equation for an insulator

∂D2

∂x2
= −kmev

′′ − kS
e

∂2φ

∂x2
2

= 0, (7.43)

and then, through a simple double integration, we obtain the electric potential

φ(x1, x2) = −1

2

kme

kS
e

x2
2v
′′ + a1x2 + a0. (7.44)

By imposing the electrode voltage V

�φ = φ(x1, h/2+ hp)− φ(x1, h/2) = V , (7.45)

we can evaluate the parameter a1

a1 = 1

2

kme

kS
e

(h+ hp)v′′ + V

hp

. (7.46)
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The electric field can then be expressed in terms of the displacement v(x1, t) and the
electrode voltage V (t) as

E2 = kme

kS
e

x2v
′′ − 1

2

kme

kS
e

(h+ hp)v′′ − V

hp

. (7.47)

At this point, since the voltage is an easily measurable electric quantity, it is appropriate
to use it as a state variable, and rearranging the terms of the Lagrangian (7.42), we can
obtain an equivalent expression in terms of v and V :

L(v, V ) =
ˆ L

0

1

2
ρlbv̇

2dx1 +
ˆ x1,f

x1,i

1

2
ρlp v̇

2dx1

−
ˆ L

0

1

2
Kmb (v′′)2dx1 −

ˆ x1,f

x1,i

1

2
Kmp (v′′)2dx1

−
ˆ x1,f

x1,i

(
−Kmev

′′V − 1

2
KeV

2
)

dx1, (7.48)

where the meaning of the parameters used is defined below. The linear mass density of
the host beam ρlb and of the piezoelectric pair ρlp are

ρlb = b

ˆ h
2

− h
2

ρbdx2, ρlp = 2b

ˆ h
2+hp

h
2

ρpdx2. (7.49)

Analogously, the host beam stiffness Kmb and the piezoelectric stiffness Kmp are

Kmb = b

ˆ h
2

− h
2

Yb x2
2 dx2 = Yb

bh3

12
, (7.50)

Kmp = 2b

ˆ h
2+hp

h
2

{
kE
m x2

2 +
k2
me

kS
e

[
x2

2 −
1

2

(
h+ hp

)
x2

]

−1

2

k2
me

kS
e

[
1

4

(
h+ hp − 2 x2

)2
]}

dx2

= 2b kE
m

(
h2hp

4
+ hh2

p

2
+ h3

p

3

)
+ b

k2
me

kS
e

h3
p

12
. (7.51)

The electro-mechanical coupling parameter Kme is

Kme = 2b

ˆ h
2+hp

h
2

kme

hp

x2dx2 = b kme

(
h+ hp

)
. (7.52)

Finally, the electric parameter Ke is

Ke = 2b

ˆ h
2+hp

h
2

kS
e

h2
p

x2dx2 = 2b
kS
e

hp

. (7.53)

By including the mechanical and electrical work done by, respectively, the linear force
density f and the applied charge density q, and equating to zero the variation of the
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introduced action, we obtain the governing equations of the piezoelectric system in
terms of the mechanical and electrical degrees of freedom:

ˆ t1

t0

δLdt +
ˆ t1

t0

ˆ L

0
f δv dx1dt −

ˆ t1

t0

ˆ x1,f

x1,1

2qδV dx1dt = 0. (7.54)

The governing equations of the piezoelectric composite beam can be deduced from
Eq. (7.54) and (7.48):{
ρl v̈(x1, t)+ (

Kmv
′′(x1, t)

)′′ = [
δ′(x1 − x1,i)− δ′(x1 − x1,f )

]
KmeV (t)+ f (x1, t)

CeV (t)+Kmev
′(x1, t)|x1,f

x1,i = Q(t).

(7.55)

For the sake of conciseness, we introduce the total linear mass density

ρl = ρlb + ρlp

[
H (x1 − x1,i)−H (x1 − x1,f )

]
and the total stiffness

Km = Kmb +Kmp

[
H (x1 − x1,i)−H (x1 − x1,f )

]
,

in which H is the Heaviside step function. The constant

Ce = 2
kS
e b

hp

(
x1,f − x1,i

)
(7.56)

is the whole capacitance and Q is the total applied charge. In Eq. (7.55) the mechanical
action of the piezoelectric patches is represented by the derivative of the Dirac delta δ′,
since these transducers act on the beam with concentrated moments at the endpoints x1,i

and x1,f .
Recalling that the terminal voltage V is the time derivative of the flux linkage ψ̇, in

order to simplify the theoretical analysis, a generalized flux linkage χ and a normalised
current ι are introduced,

χ =
√

Ceψ, ι = i√
Ce

. (7.57)

Therefore, by differentiating the second equation of Eq. (7.55) with respect to time, and
plugging it into the relations (7.57), we obtain{

ρl v̈(x1, t)+ (
Kmv

′′(x1, t)
)′′ − [

δ′(x1 − x1,i)− δ′(x1 − x1,f )
]
γχ̇(t) = f (x1, t)

χ̈(t)+ γ v̇′(x1, t)
∣∣x1,f
x1,i

= ι(t),

(7.58)

where the coupling coefficient γ is equal to Kme/
√

Ce. The space discretisation of equa-
tions (7.58) is nowadays undertaken by means of finite element discretisation. In this
regard, very recently an approach based on non-uniform rational B-splines (NURBS)
has proved to be successful in the treatment of bending structural elements, see e.g.
[69–73]. In order to derive the governing equations of the system considered in a form
convenient for designing a control to suppress undesired vibration modes of the host
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beam, the governing equations (7.58) have been expressed in the frequency domain by
means of a modal analysis. Thus, the displacement v of the system is expanded as

v(x1, t) =
∑

i

Wi(x1)ηi(t), (7.59)

where Wi(x1) is the mode shape of the ith normal mode of the system, obtained by
removing the excitation f , and under short circuit condition χ̇ = 0. The coefficient
ηi(t) is the generalized coordinate describing the response of the ith normal mode. In
order to make the decomposition unique, the mode shapes are normalised to a unitary
value. Hence, the governing equations of the electro-mechanical beam can be expressed
in the frequency domain as follows [74]:{

η̈i(t)+ ω2
i ηi(t)− ωigi χ̇(t) = fi(t) with i = 1, 2, ...

χ̈(t)+∑
i ωigi η̇i(t) = ι(t),

(7.60)

where fi(t) =
´ L

0 Wi(x1) f (x1, t)dx1 represents the ith mode force. We define the unit-
frequency normalised coupling coefficient gi as

gi = γ W ′
i

∣∣x1,f
x1,i

/ωi . (7.61)

Then, assuming low modal coupling and the mechanical load to have a frequency con-
tent in a range close to the j th mode frequency, we can simplify Eq. (7.60) by neglecting
the effects of the other modes,{

η̈j (t)+ ω2
jηj (t)− ωj ghχ̇(t) = fh(t)

χ̈(t)+ ωj ghη̇j (t) = ι(t).
(7.62)

The system (7.62) is characterized by a single mechanical degree of freedom with a
single piezoelectric transducer having a unit inherent capacitance and a gyroscopic cou-
pling [75]. In order to address the problem of vibration control of the mode of the beam
under consideration with a single piezoelectric transducer, we can complete this system
with an external shunt circuit consisting of an electrical impedance, or admittance. The
key idea is to use the piezoelectric transducer as a device which allows exchange of the
mechanical energy with the electric circuit. Indeed, as the base structure vibrates, the
piezoelectric transducer will be subjected to a voltage, which, in turn, causes a flow of
electric current through the shunted admittance. A strictly passive admittance involves
a loss of vibration energy. Firstly, in [76] and in [77], a passive shunt circuit made up of
a resistor and an inductor connected in series or in parallel, respectively, is proposed. It
has been shown that with proper design of these components, an electrical damper can
be obtained (see also [74, 78, 79]).

In the case of a shunt circuit with a resistor, r , and an inductor, �, connected in parallel
(see Fig. 7.5), the total admittance is associated with a normalised current given by

ι(t) = −1

r
χ̇(t)− 1

�
χ(t). (7.63)
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Figure 7.5 Equivalent circuit for a shunted circuit with a resistor and an inductor connected
in parallel.

Introducing the notation

1

�
= �2

j ,
1

r
= 2�j ζj and βj = �j

ωj

, (7.64)

the equations involving the control action of the shunt admittance can be written as
follows: {

η̈j (t)+ ω2
j ηj (t)− ωj gj χ̇ (t) = fj (t)

χ̈ (t)+ 2�j ζj χ̇(t)+�2
jχ(t)+ ωj gj η̇j (t) = 0.

(7.65)

The second equation of (7.65) can be interpreted as the electric subsystem constituted
by the parallel of r , � and the unit capacitance related to the piezoelectric patch, and
whose eigenfrequency is �j , and loss factor is ζj . In order to set the optimal values
of the external resistor and inductance, namely the natural circular frequency, �j , and
the damping ratio, ζj , the fixed points method, developed in [80], can be employed (see
Fig. 7.6),

�
opt
j = ωj , ζ

opt
j =

√
6

4
gj . (7.66)

Up to now, the piezoelectric beam has been characterized by means of two Lagrangian
descriptors: the displacement field and the voltage of each pair of piezoelectric patches.
Nevertheless, as we mentioned before, in addition to the displacement variable, the
system which we are considering can be characterized also in terms of charge. Thus,
in that situation, the current configuration can be described, from a mechanical point
of view, by the transverse displacement v(x1, t), while the descriptor for the electric
behaviour is assumed to be the electric displacement D. Hence, in order to describe
the piezoelectric beam we assume the density of the Lagrangian function [81] to be as
follows:

L = 1

2
ρv̇2 −U(Sij , Di), (7.67)
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Figure 7.6 Mobility functions of a piezoelectric pair with a coupling coefficient, gh = 0.25 on a
beam for: i) an open circuit condition (OCC); ii) a shunted inductor tuned in the neighbourhood
of the open circuit frequency ω

q
h

(�→ ω
q
h

); iii) a short circuit condition (SCC); iv) a shunted
inductor tuned around the short circuit frequency ωh (�→ ωh); v) an optimal shunt circuit of a
resistor and an inductor connected in series; vi) an optimal shunt circuit of a resistor and an
inductor connected in parallel.

where U is the stored energy density [63], which depends on the small strain tensor
Sij and the electric displacement Di . In particular, the stored energy density U can be
expressed as

U (S11, D2) = 1

2
k̃D
m S2

11 − k̃meS11D2 + 1

2
k̃S
e D2

2, (7.68)

where only the significant components of S and D have been taken into account. The
constitutive parameters appearing in Eq. (7.68) are defined as:

k̃D
m = YD

p , k̃me = h21 = YD
p g21, k̃S

e = βS
22 =

1

εS22

, (7.69)

where YD
p is the Young’s modulus in the x1-direction (perpendicular to the direction in

which the piezoelectric element is polarised) and under open circuit conditions (refer
to the superscript D), h21 or g21 are piezoelectric constants with polarisation along the
x2-direction and εS22 is the dielectric constant for the null deformation. Equivalently, the
parameters (7.69) can be expressed as follows

k̃D
m = YE

p +
(
YE

p d21

)2

εT22 − YE
p d2

21

, k̃me =
YE

p d21

εT22 − YE
p d2

21

, k̃S
e =

1

εT22 − YE
p d2

21

,

(7.70)

in terms of YE
p , i.e. the Young’s modulus under short circuit conditions, the piezoelectric

constant d21 and εT22, namely the dielectric constant under free stress conditions. Note
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that, as is clear from Eqs. (7.69) and (7.70), the Young’s modulus with short circuited
electrodes is lower than the Young’s modulus with the open circuited electrodes. By
means of some simple thermodynamical arguments it is possible to show that the fol-
lowing relation between the enthalpy H and the stored energy U holds:

U (S11, D2) =H (S11, E2(D2))+ E2D2. (7.71)

The constitutive relations for the only significant components of the stress tensor T

and the electric field vector E, from Eq. (7.68), are given by

T11 = ∂U

∂S11
= k̃D

m S11 − k̃me D2, (7.72)

E2 = ∂U

∂D2
= −k̃me S11 + k̃S

e D2. (7.73)

In the framework of the linear theory of piezoelectricity, considering linear elastic defor-
mations and the quasi-electro-static approximation, by denoting the free charge density
per unit surface with q, we have

S11 = −x2v
′′, D · n = D2 = −q. (7.74)

By substituting the assumptions (7.74) in Eq. (7.67), the Lagrangian function L can be
computed as

L(v, q) = b

ˆ L

0

ˆ h
2

− h
2

1

2
ρbv̇

2dx1dx2 + 2b

ˆ x1,f

x1,i

ˆ h
2+hp

h
2

1

2
ρp v̇

2dx1dx2

− b

ˆ L

0

ˆ h
2

− h
2

1

2
Yb (x2v

′′)2dx1dx2 − 2b

ˆ x1,f

x1,i

ˆ h
2+hp

h
2

1

2
k̃D
m (x2v

′′)2dx1dx2

+ 2b

ˆ x1,f

x1,i

ˆ h
2+hp

h
2

[
k̃me x2 q v′′ − 1

2
k̃S
e q2

]
dx1dx2. (7.75)

By performing integrations with respect to the variable x2, we obtain

L(v, q) =
ˆ L

0

1

2
ρlbv̇

2dx1 +
ˆ x1,f

x1,i

1

2
ρlp v̇

2dx1

−
ˆ L

0

1

2
Kmb (v′′)2dx1 −

ˆ x1,f

x1,i

1

2
K̃mp (v′′)2dx1

+
ˆ x1,f

x1,i

(
K̃mev

′′q − K̃e q2
)

dx1, (7.76)

where the meanings of the material parameters are defined in the following way. The
lineal mass densities of the host beam ρlb and of the piezoelectric pair ρlp are

ρlb = b

ˆ h
2

− h
2

ρbdx2, ρlp = 2b

ˆ h
2+hp

h
2

ρpdx2. (7.77)
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The host beam stiffness Kmb and the piezoelectric stiffness K̃mp are given by

Kmb = b

ˆ h
2

− h
2

Yb x2
2 dx2 = Yb

bh3

12
(7.78)

and

K̃mp = 2b

ˆ h
2+hp

h
2

k̃D
m x2

2 dx2 = 2b k̃D
m

(
h2hp

4
+ hh2

p

2
+ h3

p

3

)
. (7.79)

The electro-mechanical coupling parameter K̃me is

K̃me = 2b

ˆ h
2+hp

h
2

k̃me x2 dx2 = b k̃mehp

(
h+ hp

)
, (7.80)

and, finally, the electric parameter K̃e is

K̃e = 2b

ˆ h
2+hp

h
2

k̃S
e

2
dx2 = b k̃S

e hp. (7.81)

By including the mechanical and electrical work done, respectively, by the force density
per unit line f and the applied voltage V , and equating to zero the variation of the
introduced action, we obtain the governing equations of the piezoelectric system in
terms of the mechanical v and electric q degrees of freedom:

ˆ t1

t0

δLdt +
ˆ t1

t0

ˆ L

0
f δv dx1dt + 2b

ˆ t1

t0

ˆ x1,f

x1,1

V δq dx1dt = 0. (7.82)

Therefore, the governing equations of the piezoelectric composite beam can be deduced
from Eq. (7.82) and (7.76):⎧⎪⎨
⎪⎩
ρl v̈(x1, t)+

(
K̃mv

′′(x1, t)
)′′ = [

δ′(x1 − x1,i)− δ′(x1 − x1,f )
]
KmeQ(t)+ f (x1, t)

1

C̃e

Q(t)− Kmev
′(x1, t)|x1,f

x1,i = V (t),

(7.83)

where Q is the total free charge and, for the sake of conciseness, we introduce the total
lineal mass density

ρl = ρlb + ρlp

[
H (x1 − x1,i)−H (x1 − x1,f )

]
, (7.84)

the total stiffness

K̃m = Kmb + K̃mp

[
H (x1 − x1,i)−H (x1 − x1,f )

]
, (7.85)

in which H (·) is the Heaviside step function, and the constants

Kme = K̃me

x1,f − x1,i
, C̃e = 2

b
(
x1,f − x1,i

)(
k̃S
e hp

) , (7.86)
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which represent, respectively, a coupling coefficient and the whole capacitance. Since
the derivative of the Dirac delta δ′ is involved, in Eq. (7.83) the mechanical actions of
the piezoelectric patches can be interpreted as concentrated moments at the endpoints
x1,i and x1,f . The second equation of Eqs. (7.83) can be interpreted as corresponding
to the equivalent electrical circuit of the piezoelectric patches. Indeed, according to
Thévenin’s theorem, such an equation represents a strain dependent voltage source in
series connection with a capacitance.

In order to simplify the theoretical analysis, a normalised total free charge θ and a
generalized voltage κ are introduced:

θ(t) = Q(t)√
C̃e

, κ(t) =
√

C̃eV (t). (7.87)

Therefore, substituting the relations (7.87) in Eq. (7.83), we obtain{
ρl v̈(x1, t)+

(
K̃mv

′′(x1, t)
)′′ − [

δ′(x1 − x1,i)− δ′(x1 − x1,f )
]
γ̃ θ(t) = f (x1, t)

θ(t)− γ̃ v′(x1, t)|x1,f
x1,i = κ(t),

(7.88)

where now γ̃ = Kme

√
C̃e denotes the generalized coupling coefficient. As before, the

governing equations employed to control an undesired vibration mode of the beam
have been obtained by performing a modal analysis. The displacement v of the system
considered may be expanded in series as

v(x1, t) =
∑

i

Wi(x1)ηi(t), (7.89)

where Wi(x1) is the mode shape of the ith normal mode of the system when the exci-
tation f is removed and under open circuit condition (θ = 0), the coefficients ηi(t)
are the generalized coordinates describing the response of the ith normal mode. In
order to make the decomposition unique, the mode shapes are normalised to the unitary
value. Therefore, the governing equations for the piezo-electro-mechanical beam can be
summarised as{

η̈i(t)+ (ωq
i )2 η(t)− ω

q
i g̃iθ(t) = fi(t) with i = 1, 2, ...

θ(t)−∑
i ω

q
i g̃iηi(t) = κ(t),

(7.90)

in which fi(t) =
´ L

0 Wi(x1) f (x1, t)dx1 represents the ith mode force and the following
definition has been used for the unit-frequency normalised coupling coefficient g̃i :

g̃i = γ̃ W ′
i

∣∣x1,f
x1,i

/ω
q
i . (7.91)

Then, assuming low modal coupling and the mechanical load having a frequency content
in a range close to the hth mode frequency, we can simplify Eq. (7.90) neglecting the
effects of the other modes,{

η̈h(t)+ (ωq
h)2 η(t)− ω

q
hg̃hθ(t) = fh(t)

θ(t)− ω
q
hg̃hηh(t) = κ(t).

(7.92)
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It is noteworthy that relations between ωh and ω
q
h can be easily deduced analysing the

relevant conditions of a short circuit condition and an open circuit condition, both from
Eqs. (7.62) and (7.92), as follows

(ωq
h)2 = ω2

h (1+ g2) or ω2
h = (ωq

h)2 (1− g̃2), (7.93)

respectively. Consequently, the relationship between the coupling coefficient g and g̃

reads as

g̃2 = g2

1+ g2
. (7.94)

In the same spirit of [76], we can consider a vibration control shunting the piezoelec-
tric transducer with an electric circuit. Specifically, in the case of a shunt circuit with a
resistor, r , and an inductor, �, connected in series (see Fig. 7.7), the generalized voltage
is given by

κ(t) = −r θ̇(t)− �θ̈(t). (7.95)

Introducing the notation

1

�
= �2

h,
r

�
= 2�hζh and αh = �h

ω
q
h

, (7.96)

the closed-loop equations are written as follows:{
η̈h(t)+ (ωq

h)2 ηh(t)− ω
q
hg̃hθ(t) = fh(t)

θ̈ (t)+ 2�hζhθ̇(t)+�2
hθ(t)− ω

q
h g̃h �

2
h ηh(t) = 0.

(7.97)

The optimal values of the external resistor and inductance, related to the natural cir-
cular frequency, �j , and the damping ratio, ζj , obtained by means of the fixed points
method [80] are (see Fig. 7.6):

Figure 7.7 Equivalent circuit for a shunted circuit with a resistor and an inductor connected in
series.
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Figure 7.8 Piezoelectric beam.

Figure 7.9 Inertance functions of the piezoelectric beam in Fig. 7.8 shunted with a multiterminal
network and in a short circuit condition.
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�
opt
h =

√
2√

2− g̃2
h

ω
q
h , ζ

opt
h = 0.6465 g̃h. (7.98)

Finally, using the models sketched in this section, it is possible to generalize the vibra-
tion control for many vibration modes of a beam or a plate equipped with many piezo-
electric patches as reported in [74] and shown in Fig. 7.9 with measured inertance
functions on a real beam in which one piezoelectric pair is used to impose a vibration
and the other two are shunted with an electrical multiterminal network to damp such a
vibration.
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8 Least Action and Virtual Work
Principles for the Formulation of
Generalized Continuum Models
F. dell’Isola, P. Seppecher, L. Placidi, E. Barchiesi, A. Misra

8.1 Introduction and Historical Background

Although the principle of virtual velocities is rooted deep in time, the study of its histor-
ical development, as well as studies of its variations and transformations that have been
presented at various times, are surprisingly meagre. In this rather sparingly explored
field we have found especially interesting the work [36], and particularly modern and
still topical the presentations by Lagrange and Piola ([15, 30],[24, 25, 27–29]). A pre-
sentation of the history of mechanics cataloguing the main contributions to mechanical
sciences on the basis of their postulation scheme is, in our opinion, a worthy endeavor
that deserves the exemplary efforts of modern mechanicians. It is clear that the great
majority of formulations of novel branches of mechanics, and more generally of physics,
has been obtained via a basic unifying variational principle (see e.g. [1, 11, 16, 18, 26,
32–35]). In his works Jean Le Rond D’Alembert has been one of the bravest champions
of this point of view: we refer to [10] for a due tribute to his contribution to mechanical
sciences. The D’Alembertian point of view is shared, among many other scholars, by
Hellinger ([38]), Landau ([17]), Feynman [11], Germain [13], Cosserat brothers [6],
Lagrange [30], Piola [29], Sedov, Mindlin and Toupin [28], and Winter [23].

8.1.1 Ancient Occurrences of the Principle of Virtual Velocities

It is accepted, nearly unanimously, by scholars in Greek science that the first formula-
tions of mechanics, that reached us via the texts of the Hellenistic school, are based upon
the principle of virtual velocities (see again [23]). A careful analysis of ancient texts (see
e.g. [2, 5, 22]) will lead to the assessment that the law of the lever was formulated start-
ing from precisely such a principle. Thomas Winter arrives at a conclusion to attribute,
in a brilliant way, to Archytas of Tarentum the pseudo-Aristotelian text Mechanical
Problems, where the first known formulation of the principle of virtual velocities can be
found. Archytas was believed by ancient sources (for instance by Vitruvius, see also e.g.
[40]) to be the founder of “mathematical” mechanics and was credited with having an
“algebraic” approach to mathematics (see [39]). The reader will agree that the program
of transforming mechanics into an algebra-based physical theory, which abandons the
support of geometrical techniques, is exactly the cultural project successfully started by
Lagrange (see Chapter 4 where the Lagrangian introduction to analytical mechanics is
translated).
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To illustrate the depth and breadth of Hellenistic science, we have found a quote by an
Epicurean scholar which gives a clue to the advanced understanding of mathematics and
physics of his era. The Hellenistic effort to produce a predictive science seems to have
been continuous and determinate: we refrain here from the necessarily longer arguments
needed to present this case, and we refer to the precise and rigorous discussion presented
in [21] by Lucio Russo. The Epicurean philosopher and scientist to whom we refer
is Metrodoron, and we believe that the following sentence attributed to him can be
regarded as one among the first statements at the basis of “modern” epistemology (see
also [41]):

Always remember that you were born mortal and such is your nature and you were given a
limited time: but by means of your reasonings about Nature you could rise to infinity and to
eternity and you indeed contemplate “the things that were, and that were to be, and that had
been before.”

Gnomologium Epicureum Vaticanum X (fr.37 Alfred Körte, Metrodori Epicurei Fragmenta,
Jahrböcher för classiche Philologie, Suppl. XVII, 1890, p. 557).

From what we know about him, Metrodoron may have formulated some epistemological
concepts leading him to claim that science (i.e. reasonings about Nature) allows for the
prediction of future events. By stating this old concept in modern terms (even if many
scholars would claim that we are considering the Hellenistic science too modern!) he
states that by using a mathematical model one can manage to predict the future evolution
of physical systems. The educated classical scholar has probably recognized that the
bold sentence in the previous quotation is a quotation inside a quotation: it is from Iliad
Vol.I line 70. One can claim that in Hellenistic culture there was no distinction between
(with a later terminology) humanistic and scientific culture: the interested reader can
refer to [21] for a detailed discussion of this point.

8.2 Why Look for the Historical Roots of Variational Principles and
Calculus of Variation?

The most efficient way to learn how to formulate new mathematical models apt to
describe physical reality consists in carefully studying how the most successful models
were first formulated by their inventors. For this reason we believe that it is important
to understand how, when, and by whom a model was formulated the first time: we need
to be inspired by the creative acts of our predecessors if we want to follow in their foot
steps.1 Archimedes was aware of this need. In his On the The Method (as translated by
Heath from the Latin translation by Heiberg (see [42] pp. 12–14)) we can read:2

Archimedes to Eratosthenes greeting. I sent you on a former occasion some of the
theorems discovered by me, merely writing out the enunciations and inviting you to
discover the proofs, which at the moment I did not give. The enunciations of the theorems
which I sent were as follows. . . . The proofs then of these theorems I have written in this

1 We believe that all the other motivations involving the establishment of priority are not relevant except,
maybe, for the vainglory of some scholars.

2 This quotation seems to us so important that we decided to reproduce it completely.
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book and now send to you. Seeing moreover in you, as I say, an earnest student, a man
of considerable eminence in philosophy, and an admirer [of mathematical inquiry], I
thought fit to write out for you and explain in detail in the same book the peculiarity
of a certain method, by which it will be possible for you to get a start to enable you to
investigate some of the problems in mathematics by means of mechanics. This procedure
is, I am persuaded, no less useful even for the proof of the theorems themselves; for
certain things first became clear to me by a mechanical method, although they had to be
demonstrated by geometry afterwards because their investigation by the said method did
not furnish an actual demonstration. But it is of course easier, when we have previously
acquired, by the method, some knowledge of the questions, to supply the proof than it
is to find it without any previous knowledge. This is a reason why, in the case of the
theorems the proof of which Eudoxus was the first to discover, namely that the cone is a
third part of the cylinder, and the pyramid of the prism, having the same base and equal
height, we should give no small share of the credit to Democritus who was the first to
make the assertion with regard to the said figure though he did not prove it. I am myself
in the position of having first made the discovery of the theorem now to be published [by
the method indicated], and I deem it necessary to expound the method partly because I
have already spoken of it and I do not want to be thought to have uttered vain words, but
equally because I am persuaded that it will be of no little service to mathematics; for I
apprehend that some, either of my contemporaries or of my successors, will, by means
of the method when once established, be able to discover other theorems in addition,
which have not yet occurred to me. First then I will set out the very first theorem which
became known to me by means of mechanics, namely that: Any segment of a section of
a right-angled cone (i.e. a parabola) is four-thirds of the triangle which has the same
base and equal height, and after this I will give each of the other theorems investigated
by the same method. Then, at the end of the book, I will give the geometrical [proofs of
the propositions]. . ..

To the benefit of his successors, Archimedes not only writes down the formal proof
of the theorem he managed to demonstrate, but he also discloses the heuristic procedure
which allowed him to reach his formal result. Indeed, he is aware of the importance of
letting all scholars know not only about the mathematical result by itself, but also how
it has been conjectured.

Heiberg’s palimpsest, lost after its first modern rediscovery by Heiberg [19], has
more recently been rediscovered: its careful analysis is allowing us to understand better
and better the scientific vision of Archimedes. For instance (see [20] for more details)
in his On Floating Bodies he solves (by using a variational principle and variational
techniques), the problem of determining the shape of a hull which optimizes its floating
performances. In [21] it is shown that this is not an episodic application of optimization
techniques in Hellenistic science: such techniques were already very well known in that
époque. For instance, we have evidence that some Hellenistic scholars were able to find
which regular polygon encloses the maximal area (see [39] and [43] for more details
about this and some other optimization problems). We have tried carefully to find in
the literature some precise references about the famous Dido’s isoperimetric problem: it
seems to us that the only trace of its ancient formulation remains in Virgil’s Aeneid.
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Without doubt variational principles and methods were developed within Hellenistic
science and, since then, they have often been used in many fields of physics. The
variational formulation leading to the evolution equations of a system has always been
considered a very important challenge in mechanical sciences and mathematics, as it
seems to make the study of their well-posedness easier. Moreover, variational meth-
ods are very effective for proving stability results, and they allow for an effective and
immediate application of numerical solution strategies.

It is also clear that the majority of mechanical models have been formulated at first
by means of variational principles (this statement is discussed or supported by many
authors: see for a detailed discussion of this point e.g. [1–3, 5, 6, 11, 15–18, 22, 24,
25, 27–30, 32–34, 37, 38, 41]). More generally the principle of virtual work must be
regarded as the most effective foundation of all models in physics, and also as the
most effective tool to solving them. Finally, it is very useful to establish the needed
relationships between micro and macro models, as they can be employed to deduce
approximate homogenized asymptotic models.3

It seems to us that the principle of virtual work and the principle of least action
have roots much deeper than many scientists believe (see again Vailati [22]). Even if
some authors refer to a theorem of the principle of virtual work (which seems to us
to be rather an oxymoron), it appears clear from the available sources that the first
formulations of the majority of mathematical models for physical phenomena were
obtained by assuming it as the most fundamental postulate. Such models were then,
eventually, reformulated in terms of balance laws.

Moreover, most likely, the principle of least action, i.e. a “geometric” formulation of
its laws, was used by the scientists of the Hellenistic period to establish mechanics as a
hypothetico-deductive theory.4 Most of the epigones of Hellenistic science, especially
during Middle Age, could not master the arguments leading from variational principles
to the solution of “practical” exercises useful in the applications. However, they could
grasp the “a posteriori” interpretations of the necessary minimality or stationarity con-
ditions5 deduced by their predecessors, which were, therefore, assumed sometimes as a
starting point (i.e. as postulates) on the basis of not so clear “physical” arguments.

Therefore, a group of epigones of Hellenistic scientists decided to start from a postula-
tion of mechanics based on balance laws and to consider the conservation of energy and,
eventually, the validity of the principle of virtual work as some sophisticated and some-
times too abstract mathematical tools, without any “physical” meaning, to be reserved
for some very particular mathematical considerations and applications.6

3 The most ancient sources presenting this kind of result which we managed to find are [24, 27, 29], as
discussed in [25, 28].

4 This point of view is also shared, among others, by Colonnetti [5] and by Netz and Noel [19].
5 i.e. the necessary conditions which are deduced from the variational principles and are equivalent to those

which are now called Euler–Lagrange equations and boundary conditions, naming them after the modern
champions of variational methods.

6 The reader will note that Truesdell treated variational principles as a kind of (unimportant) appendix in the
work which he co-authored with R. Toupin. In this appendix Truesdell criticized bitterly the work and the
opinions expressed by Hellinger [32–35], who may be considered as the main German champion of
variational principles of his generation. The more sophisticated technique of damnatio memoriae has been
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This process of erasing ancient theories together with the fundamental assumptions
on which they were based and their reformulation in what are called “more modern
presentations” occur frequently in the history of science (see e.g. [21? ]). We recall here,
as an example, the story of the formulations (and reformulations) of the Euler–Bernoulli
Beam theory (see [2] for more details). Its discovery, as far as we can reconstruct it with
the available sources, can be summarised as follows: i) Euler postulated that the Elastica
“chooses” the stable equilibrium configurations by minimizing its deformation energy;
ii) Euler and Bernoulli decided that the most suitable deformation energy density had
to be chosen as a quadratic function of the Elastica curvature; iii) Lagrange managed to
calculate the stationarity condition for the energy postulated by Euler and Bernoulli and,
therefore, he could get the well-known differential equation and boundary conditions
for the transverse displacement beams (i.e. the equations for the equilibrium of the
Elastica); iv) Navier, in his lectures, needed to use the equation of the Elastica and
wanted to present it without using the calculus of variations. He therefore obtained
the equilibrium equation starting from the principle of balance of forces and couples,
and imposed “ad hoc” boundary conditions based on “physical” assumptions.7 Because
of the success of this teaching approach, many engineering courses based the whole
of continuum mechanics on postulations starting from balance principles and a wrong
idea spread among scholars: i.e. the beam equations were obtained by Euler starting
from balance of forces and moments. This belief induced a wrong understanding of the
process of invention of new models in mechanics and, more generally, in physics.

We recall here that: i) Navier did try to get the equilibrium equations for a three-
dimensional continuous body via an averaging procedure starting from molecular
dynamics, and his results were very partial and rather defective (see [2] where the
presence of a unique Poisson ratio in the Navier model is discussed); ii) Piola, instead,
had already found the correct equations for generalized continua in his work [27],
starting from a postulation of mechanics based on the principle of virtual work.

The point of view accepted by Navier persisted until numerical simulations became
necessary. In order to formulate numerical codes variational “principles” are indispens-
able, as finite differences procedures are not effective in the study of partial differ-
ential equations. Unfortunately, instead of coming back to the origins of postulation
in mechanics, variational principles were recovered as theorems as, simply for some
sociological reasons, the “balance postulates” are considered to be more “physically”
understandable.

Variational principles were therefore regarded simply as computational and mathe-
matical8 tools and their heuristic power was often forgotten, especially in some parts
of the scientific milieux of the scholars in continuum mechanics. This attitude has not
been modified by these scholars even when it was observed that (see e.g. [28, 51, 96])

applied in [45]: in this textbook there is absolutely no mention of variational principles and techniques, as
if they were not an important part of mechanics.

7 Note that, instead, when using the principle of minimum energy the correct boundary conditions are
deduced, by means of a process of integration by parts.

8 Therefore too abstract to be understandable.
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the majority9 of the advancements in mechanics were made possible by the wise use of
some variational principles. It is ironic that many of the said scholars, in the presence of
the unavoidable difficulties arising when using balance laws postulations, invoke the use
of the “physical sense.” While many declare to know the essence of such a “mytholog-
ical phoenix,”10 nobody can teach what it is or, at least, how to use it. Physical sense is
declared as a necessary tool to choose the right “balance principles” when one wants to
invent new models. However, nearly all creative theoretical physicists refrain from using
balance laws and systematically base their reasonings on minimization postulates: for
instance, quantum mechanics and general relativity have been developed firmly based
on a variational principle (see e.g. Landau [17], Feynman [11], Lagrange [15, 30],
Lanczos [16]).

We list here some additional historical examples, beyond the study of equilibrium of
the lever:

i) Lagrange, Sophie Germain and Kirchhoff based their investigations aimed at
determining the equations of plates on the basis of deformation energy mini-
mization, and found the (right!) natural boundary conditions without any physical
intuition (see e.g. [2]);

ii) Cosserat brothers, in order to generalize Cauchy-first gradient continuum mechan-
ics, needed to “rediscover” the principle of least action (see [6]);

iii) also nonconservative phenomena can be described by means of variational prin-
ciples: the case of fracture is exemplary (see [4, 12]).

We underscore that our interest is not to engender disputes regarding the priority in
discoveries. We simply try to make clear our opinion about the logical frame which is
more suitable for inventing novel mechanical models, entailing the following advice to
the modeler: always avoid trying to formulate new models using “ad hoc” modifications
of already existing theories, but try always to understand which is the most suitable
action functional. When you have found it: simply minimize it!

8.3 Pluralitas non est ponenda sine necessitate
(John Duns Scoto 1265–1308)

Very often, in order to be able to transmit knowledge, scholars have used slogans, and
some of them have been learnt by heart by generations of students.11 The word (slogan)
which is nowadays used in all languages has a relatively recent etymology.12 However,
the concept was known and the technique was used systematically in every educational
system based on the classical Greek and Latin culture. Mnemonics techniques are based

9 We may want to say: all. However such a general statement is impossible to prove.
10 “E‘ la fede degli amanti come l’araba fenice, che vi sia, ciascun lo dice, dove sia nessun lo sa. Se tu sai

dov’ha ricetto, dove muore e torna in vita, me l’addita . . .” which may be translated as follows: “Is the
fidelity of the lovers like the phoenix: that it exists everybody says, but where it is nobody knows. If you
know where his shelter is, where it dies and comes back to life, please indicate this place to me”
Metastasio, Demetrio, II.3 (1731)

11 Slogan: a short and striking or memorable phrase used in advertising. (Oxford Dictionary definition).
12 It is an Anglicisation of the Scottish Gaelic and Irish word sluagh-ghairm (sluagh “army”, + gairm “cry”).
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on a careful choice of slogans, which are repeated again and again with the intention to
leave a trace of their meaning in the mind of all scholars.13

Of course slogans can be misunderstood. Therefore, memory must be supported by
a strong conceptual and logical structure. When interpreting slogans one has to be
coherent with a general epistemological vision having very sound bases (see Chapter 4).

8.3.1 What Does It Mean?

The statement which we wish to consider is: “Pluralitas non est ponenda sine necessi-
tate”: i.e. “Plurality is not to be posited without necessity.” This is a slogan or a mantra
used to fix in the mind of scholars some basic principles of epistemology. We refer to
the beautiful entry [46] of the Stanford Encyclopedia of Philosophy for a clear and deep
examination of the genesis, transmission and transformations, in Hellenistic, Middle
Ages and Modern Western civilization of all the concepts related to it.

We simply recall here that it is considered one of the most popular formulations of
the so called Occam’s razor, also known in Latin: lex parsimoniae (“law of parsimony”).
Occam’s razor is a principle to be followed in formulating a mathematical theory aiming
to describe efficiently a class of physical phenomena. This principle states that, when
the modeler is comparing competing hypothetical assumptions which may be placed
at the basis of the theoretical analysis of a problem, then ceteris paribus (i.e. when all
logical conditions and results are equivalent) the model which makes the least number
of assumptions must be selected.

Occam’s razor must be regarded as a way to help in the formulation and the develop-
ment of theoretical models. Needless to say, it is not an algorithm capable of selecting
among candidate models. Unfortunately, we are not yet able to formulate a meta-theory
able to teach us precisely how to formulate lower order14 theories (see Chapter 3).
Therefore, Occam’s razor cannot be regarded either as an “irrefutable principle of logic,”
or as a kind of scientific result based on experience (as sometimes we have found written
in textbooks based on some naive epistemology). However, the falsifiability criterion
(see Chapter 3 and [47]) dictates a precise preference for “simplicity in the formulation”
of mathematical models for physical phenomena.

Actually, given a phenomenon, one can find an extremely large number of possible
alternative models explaining it: as argued, among others, by Duhem (see [48]) there is

13 The eldest author has learnt by heart the slogan attributed to Duns Scoto, while a high school student at
least forty years ago, and he had forgotten it until he needed such a statement in a debate: suddenly the
sentence and its meaning appeared in his mind, apparently out of the blue. He learnt in his subsequent
studies that a statement with a very similar meaning can be attributed to Aristotle: however, in his mind
only the one attributed to Duns Scoto, which he has learnt in a young age, remains printed permanently.

14 There are theories (first order theories) which are directly describing phenomena, while there are higher
order meta-theories which describe how to construct lower order theories. For instance, the theory of
rings in abstract algebra studies how to build and use those sets of objects in which two algebraic
operations, with particular properties, are defined. The rings of real numbers and complex numbers
(actually they are special rings: i.e. algebraic fields) are particular objects among those studied by the
theory of rings. The theory of real numbers is a theory describing physical quantities (i.e. it is a first order
theory), while the theory of rings describes the behavior of a large class of theories, which share some
specific common features, and it is a second order theory.
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a clear “underdetermination” of any scientific theory. Actually, via a logical argument
or via a selection operated using experimental evidence one cannot discriminate among
all these theories, which might appear to be equivalent. Therefore, one must choose,
among all the equivalent models, the simplest one. Indeed, as it is possible to avoid any
realistic falsification of a scientific theory with ad hoc hypotheses, one should prefer
“simpler theories” to “complex theories,” because experimental tests and control of
theoretical details are clearly more feasible and reliable (for more details in this context
see again [46]).

Regarding this fact, we mention that in modern mechanics it has been recently
observed (see e.g. [49]) that there is a proliferation of basic assumptions in the
formulation of continuum theories. Generalized continuum models have been produced
based on those which appear to be too many hypotheses (more details in the subsequent
Section 8.4). Indeed, one often finds the postulation of too many ad hoc balance
laws: one balance law for each of the needed kinematical descriptors. Truesdell (see
e.g. [28, 41, 44]) was aware of this dangerous proliferation of basic assumptions. His
response was to reject15 the kind of continuum models which could not be encompassed
in the postulation scheme based only on the balance of force and momentum.

Truesdell, therefore, opposed firmly those scholars who, having i) accepted consid-
ering models whose kinematics could not be limited to the placement field or whose
deformation energy was depending on second (or higher) gradients of the kinematical
descriptors, and ii) based their postulation scheme on the concept of balance laws,
were obliged to introduce more and more complex ad hoc fluxes and sources, and
correspondingly to postulate ad hoc balance laws. Truesdell was right in remarking that
this process (see e.g. [49]) resembles very much that which was adopted by Ptolemy
and his followers: to overcome possible falsifications of their model aimed at describing
the motion of planets, they added ad hoc (and without any unifying rationale) more
epicycles.

The reader will discover in the next sections16 how elegant is the postulation pre-
sented by Paul Germain, who postulates a unique basic principle: the principle of virtual
work. On the contrary, in order to keep using the concept of force, some scholars have
attempted its generalization: for instance by formulating the concept of configurational
force (see e.g. [50, 51]). We doubt that such an effort can really lead to a conceptual
scheme which can produce novel models and a deeper understanding of physical phe-
nomenology, unless it is reduced to a rephrasing of the principle of virtual work.

To make our opinion clear, in this context, we believe it is enough to quote a statement
by D’Alembert:

forces relative to bodies in motion are obscure and methaphysical entities which can only spread
shadows on a science which, otherwise, is crystal clear in itself

(D’Alembert, Traité de dynamique (1743) p.XVI)

15 This refusal was based on the (doubtful) persuasion that generalized continuum models were not logically
consistent with the second principle of thermodynamics (see [55], and for a detailed discussion on this
subject [32–35]).

16 And carefully studying the work [56].
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8.3.2 Occam’s Razor Originated in Hellenistic Science

Here, we make a small digression. The principle of virtual work is not the only scientific
principle which has its roots in Hellenistic science. We briefly refer here to what is
argued in greater detail in [46].

Aristotle (in his Posterior Analytics [52]) writes

We may assume the superiority, ceteris paribus [other things being equal], of the demonstration
which derives from fewer postulates or hypotheses.

While Ptolemy stated (see [53]),

We consider it a good principle to explain the phenomena by the simplest hypothesis possible.

Then, the Hellenistic tradition was simply transmitted by John Duns Scotus (1265–
1308), Robert Grosseteste (1175–1253), and Maimonides (Moses ben-Maimon, 1138–
1204) to modern scientists. Again in [53], one finds the sources which allowed Duns
Scotus to state that: “Phrases such as ‘It is vain to do with more what can be done with
fewer’ and ‘A plurality is not to be posited without necessity’ were commonplace in
13th-century scholastic writing.”

8.3.3 What It Does not Mean?

However, slogans can be misunderstood and misinterpreted. In the history of science it
has been observed that some scholars can even manage to completely twist the original
meaning of slogans to convey the opposite idea. For this reason, a slogan must be
intended to be a kind of “abstract” of a fully developed corpus of knowledge, which
has to be taught and understood in its completeness. In the context of the theory of
generalized continua, there is a tendency towards a very limited interpretation of the
slogan Pluralitas non est ponenda sine necessitate which must be discussed.

For instance, the considered class of deformation energies in the literature have been
drastically limited. Such limitations cannot be dismissed a priori, since the excercise
of examining which of the possible performances of materials belong to a specific
particular class could be inherently interesting. However, it is not possible to invoke
the principle of parsimony for stating that complex constitutive equations are useless
or, worse, that the use of too many constitutive parameters is like adding epicycles (see
Chapter 3).17

The principle of parsimony must be applied to the choice of the fundamental pos-
tulates of a theory, but not for limiting a priori the number of materials parameters.
Limiting this number is appropriate only when dealing with certain subclasses of mate-
rials. In general it is not possible to limit the number of parameters which one has to
use for an arbitrary material. (This is even more clear when considering the so-called
metamaterials, where constitutive equations are decided by the modeler)!

17 Obviously the experimental characterization of the material benefits from the reduced number of
constitutive parameters (see e.g. [94]). The drawback of this reduction is a more likely poorer description
of diverse experiments.
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Why should there be a restriction for modeling complex phenomena with oversim-
plified models? This wish is bound to remain a vain hope, as the intrinsic complexity
of a physical system cannot be ignored when looking for a mathematical model suit-
able to predict its behavior. While the number of parameters reflects the richness of
possible behaviors, this richness cannot be simplified if one wants to describe real-
ity. On the contrary the number of basic principles to be used when formulating a
model must be reduced to a minimum. Unfortunately, the misguided champions of
simplicity, instead of appropriately using Occam’s razor for reducing the number of
basic assumptions,18 assume that it is possible to use it for (arbitrarily!) reducing the
number of needed parameters. They want to impose this reduction simply because
these parameters need new theoretical and experimental efforts for being determined.
It is as if, after having discovered that the Poisson’s ratio was not the one predicted
by Navier micro-macro identification (see e.g. [2]), instead of proceeding with the
Green–Lamé reasonings and the Saint-Venant solutions for determining Young’s mod-
ulus and Poisson’s ratio with the needed experimental measurements, the scholars of
the nineteenth century had decided to ignore “superfluous” theoretical information and
to continue surviving with its only available value, as other values were difficult to
determine.

One cannot decide to give up the complexity needed to model complex systems
simply because with the available theoretical analysis and experimental evidence it is not
possible or too difficult to determine the needed parameters. The described extravagant
attitude has a cause: many objections to generalized continua theory were raised by
those who believed that simplicity means a small number of constitutive parameters and,
therefore, the extravagant scholars chose to study those generalized continua which are
characterized by few non-classical elastic moduli. Why should we be ready to accept
21 first gradient elasticity parameters and be afraid of many second gradient ones? If
we want to capture complex internal interactions, such a richness is unavoidable. On
the contrary, one must find a postulation scheme which equally applies in formulating
models for both first and second gradient continua, and also all kinds of generalized
continua (see [24, 25, 27–29]). The principle of virtual work gives a unique and efficient
conceptual scheme for all mechanical theories without involving any thermodynamical
concept (this point is discussed also by Piola, when dealing with Fourier heat theory,
see [24]) and without needing any ad hoc adaptation.

In the history of mechanics we can find a clear example of a similar dispute. While
looking for a model aimed at the description of planetary motion, Ptolemaic aproaches
introduced for every planet: eccentrics, equants and epicycles. All these ad hoc concepts
were introduced to simplify the calculation procedures, as ancient analog computers
were based on controlled circular motions. The Jesuits opposing Galileo and Copernicus

18 And this can be done very elegantly by postulating a form of the principle of virtual work instead of
postulating many balance laws or, worse, by postulating some ad hoc modifications of already known
equations, basing these modifications on “physical sense” or “physical intuition.” This is what seems to
have been done often in generalized continua theory: the reader is referred e.g. to the controversy
described in [92–94].
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claimed to prefer Ptolemaic models as “they needed fewer parameters” i.e. physical
constants and degrees of freedom.19

Instead, Laplace’s approach for the description of the solar system involved complex
coupled interactions,20 used 3N degrees of freedom (with N the number of considered
planets), and the mass of each planet, together with the universal constant of gravitation.
However, the Laplacian system is based on one basic principle only. It does not need any
ad hoc adaptation and it is applied systematically to deduce all the predictions about the
motion of planets.

Galileo could not fully rebut the objections of Jesuits, as his model was not as sophis-
ticated as the one later put forward by Laplace, and his appeal to Occam’s razor was
considered inappropriate by many of his opponents. The final success of the Laplacian
planetary model was established when it allowed for the discovery of not yet observed
planets. On the other hand, the ad hoc Ptolemaic model could only describe the already
observed motion of a known planet and, by no means, could it predict the existence
of a not yet observed planet. Moreover eccentrics, equants and epicycles of a new
planet must be found by trial and error, and cannot be forecast a priori based on some
fundamental principles.

Do we need an economy of thought or an economy of parameters? We must avoid the
wrong application of Occam’s razor also in formulating generalized continua theories.

8.4 Lex parsimoniae: “Law of Parsimony.” Balance Laws or Variational
Principles for Generalized Continua?

The beautiful encyclopedia article by Hellinger (see [38]) is based on a precise objective:
to show how to use the principle of virtual work to get a unifying vision of all field
theories. Hellinger manages to describe (in 1913!), among others, the concept of higher
gradient continuum models. In a few pages, exploiting the elegance and effectiveness
of this principle, he gathers the most important and relevant results available in his
époque (see [32–35]). In [44] Truesdell, having been induced by his co-author to discuss
variational principles,21 writes negative evaluations of Hellinger’s effort, and states that,
in general, the variational principles should be avoided in the postulation process of
continuum mechanics. It is ironic, however, that many scholars learned about such a
variational principle while reading such negative comments. In the later treatise [45],
there is absolutely no mention of any form of variational principles.

Let us make our point of view clearer. Our aim here is to discuss more technically
the meta-problem of determining the procedure for formulating mathematical models
designed to describe natural phenomena and to predict their evolution. We look for an
epistemological criterion guiding us in this formulation.

19 The Ptolemaic model, as many modern computation softwares, was used too often without knowing the
fundamental theory on which it had been based: each planet was studied independently of the others.

20 Our knowledge of Hipparchus’ contributions to the subject is too fragmentary for considering him as the
founder of this theory (see [21]).

21 Also the choice of the title of their treatise was influenced by Hellinger’s title, see [54].
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8.4.1 La Cin‘ematique d’Abord!

As discussed in more detail in the Chapter 3, one must keep in mind that the ontological
status of mathematical entities is very different from that of physical objects. With a
slogan: the equations of Elastica are not a physical beam!22

One finds equations when one models phenomena exhibited by physical systems.
These equations determine and characterize mathematical objects. Once the equations
obtained by means of a model are solved, then one has to translate these solutions into
predictions which forecast the behavior of the described physical system. If the pre-
dictions correspond to the evolution which is observed in experiments, then the model
can be deemed reliable. An important warning needs to be reasserted here: a model can
describe only a limited set of phenomena. A model focuses only on a specific class of
physical objects and only a specific class of their possible evolutionary behaviors.

A first step in the above-mentioned (and needed) focusing process consists in
establishing the postulated kinematics for the considered model.

As we have remarked before, in the literature dealing with continuum mechanics
one finds two competing postulation schemes, which we will describe below. The first
postulation scheme is based on balance laws, the second on variational principles. For
both postulation schemes, a modeling procedure is needed for defining the (described)
kinematics of deformable bodies.23 In order to compare the two approaches, let us
assume here that in both the postulations24 the same kinematics concepts are introduced
as a first step in the modeling procedure.

Then, let us assume that the set of fields 
 = {

σ(xμ);σ = 1, ..n,μ = 1, 2, 3, 4

}
constituted by n tensor fields defined on B × [t0, tf], is specified and the physical inter-
pretation of these fields is clearly characterized (see Chapter 3) we denote a suitably
regular subset of the Euclidean three-dimensional space E

3 which models a reference
shape of the considered physical body, while the deformation phenomenon is observed
in the time interval [t0, tf].

In a formal mathematical way it is possible to state that the space of configurations
used to model the set of possible states of the considered physical system is thus spec-
ified precisely. The space of configurations is the set of all 
 which are considered
admissible.

8.4.2 Balance Approach

The generic admissible configuration 
 is a collection of fields which includes the
placement field and other fields whose determination is needed for specifying the state

22 This is an important warning as sometimes scholars confuse a physical object with the mathematical
model used for describing it.

23 However, some textbooks are based on the extremist idea (possibly due to Cauchy, see [57]) that the
balance of force is even more fundamental than the kinematical description of a mechanical system. In
these textbooks one finds that the concept of stress is defined before the concept of strain. Such an
approach in a variational postulation is simply inconceivable.

24 Incidentally, in [49] the presented postulation is based on balance laws, but the kinematics is studied
before these laws. Therefore one cannot criticize our showing a biased version of the postulation scheme
which we oppose.
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of the considered system. The physical interpretation of each of these fields must be
specified when the continuum model is formulated.

In some mechanics schools (see e.g. [49]) one postulates, in order to find the evolution
equation pertinent to the field 
σ , a balance law for the generic physical quantity σ in
the form: ˆ

∂S

Dσ ·N∂S +
ˆ

S

dσ = 0, (8.1)

which is assumed to be valid at very time instant, and for every sub-body S ⊂ B having
a sufficiently regular boundary ∂S with normal N∂S . In the balance law (8.1), Dσ and
dσ are, respectively, the surface flux and volume production of σ, which are to be chosen
via suitable constitutive equations, given in terms of the local values of the whole set of
the kinematic fields 
.

The previous balance equation is usually formulated in the so-called Eulerian descrip-
tion, i.e. in the actual configuration of the considered continuum. However, with a simple
change of variable in the involved integrals one can reformulate it in the Lagrangian, or
referential, description.

By a standard localization procedure one finds the associated partial differential equa-
tions valid, at every time instant, in the interior of B:

DivDσ + dσ = 0. (8.2)

On the boundary of B one must assume applying an external interaction per unit area
Dext
σ , extracting out or pumping in the physical quantity σ: Dext

σ is assumed to be
known as a function of the local values of the fields 
. This assumption, via a standard
continuity argument, produces the boundary condition

Dext
σ = Dσ . (8.3)

Very often one reads that, in order to formulate correct boundary conditions one
needs a “physical insight” of the problem, and that they are dictated by the studied
phenomenology. This is clearly a way for stating that also boundary conditions are to be
postulated, independently of the other assumptions made.25

In [58] the equations (8.2) are postulated directly, one by one, together with the
corresponding boundary conditions (8.3). Finally, we note that dσ includes all kinds
of inertia forces to be attributed to the quantity σ.

Clearly, the set of equations (8.2) and (8.3) (or equivalently (8.1), which must be
postulated for every regular sub-body S ⊆ B) is not sufficient to determine well-
posed mathematical problems. Therefore the postulation based on balance laws must be
completed by assuming a set of constitutive equations. Of course, this choice cannot be
completely arbitrary. As a consequence, even in the study of purely mechanical models,
the entropy inequality is introduced [45], which is considered as a tool for selecting
among constitutive equations those which are physically admissible. Such an approach
was criticized from an epistemological point of view by Gabrio Piola (see [24]), who

25 It is a constant response of every scholar who assumes the balance postulation to ask about the physical
basis and meaning of boundary conditions, when one deduces them from variational principles.
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stated that it would be preferable to base the study of mechanical phenomena on prin-
ciples which do not involve other extraneous phenomena. It seems to us that, while
formulating the basic equations of continuum mechanics, Piola systematically invokes
the need for using the Occam’s razor.

8.4.3 Principle of Least Action

We describe now the most fundamental variational postulation scheme which can be
found in the literature. Some scholars simply refuse to consider it because, they claim, it
cannot describe dissipative phenomena. We ask the reader to be patient and to allow us
to show how this postulation scheme has been conceived and then we will demonstrate
how it can be suitably generalized and/or adapted to include dissipative phenomena.

A synthetic flow chart sketching the procedure to be followed is as follows:

1. To choose a set of mathematical objects which seems the most suitable for spec-
ifying the state of the considered physical systems: this is the chosen set of
kinematical descriptors used, also called the space of configurations.

2. To limit attention only to those motions which are physically admissible, i.e.
to determine the set of regular functions mapping time instants into the set of
configurations which are postulated to be capable of describing the evolution of
the studied phenomena.

3. To postulate the form of an action functional. This functional has to be minimized
in the set of admissible motions, in order to find the mathematical predictions that
are capable of forecasting experimental evidence.

In other words: the formulation of a mathematical model has to begin with a determina-
tion of the space of configurations, then one considers time sequences of configurations:
i.e. motions; finally, one conjectures that there is a quantity which Nature wants to
minimize. This is done by choosing the action functional which seems the most suitable.
More formally:

• We denote the set of possible configurations by C, and a generic motion is a
smooth function having values in C defined on the time interval

[
t0, tf

]
.

• Not all of these motions are admissible as, for instance, the presence of some con-
straints will make in admissible some elements from the set of possible motions:
we will denote the set of all admissible motions by MA.

• An action is a real-valued functional, having as domain MA, which we assume to
be capable of telling us the “preferences” of Nature. Indeed, we assume that the
motion to be considered in order to predict the evolution of the modeled system
is a minimizer of the chosen action.

• It is clear that, in order to define precisely the concept of minimizer of a func-
tional, one has to specify the domain in which this minimizer must be looked
for. Following Lagrange (see also Chapter 4), in the principle of least action
we choose to minimize the action functional in the set of admissible motions
which are also isochronous. In other words, we assume that the action has to be
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minimized among motions starting at the instant t0 from a specified configuration

0 and arriving at the instant tf at another specified configuration 
f . We will
denote by MA(
0, 
f ) the set of isochronous admissible motions.

It is possible, having suitable computing tools, to stop the theoretical development of
the model at this stage. Indeed, after having postulated an “effective” action functional,
one simply needs to find its minima: and such a search is made possible by means of
modern computers using suitable numerical codes.

Actually one has only to decide, by considering the specific postulated action func-
tional, which is the numerical integration scheme more suitable to get those previsions
which are essential to supply a reliable theoretical guide for every experimental, techno-
logical or engineering activity. However, when more qualitative and theoretical general
properties of the formulated models are investigated (and when modern computing tools
are not available), it is possible to proceed further in the analysis of the model as follows:

1. one can impose a stationarity condition on the action functional, and therefore
determine its associated Euler–Lagrange conditions, which include boundary
conditions and some local conditions on the kinematical fields, which are usually
partial differential equations (PDEs); these stationarity conditions mean that the
first variation of action must vanish for every small variation of motion, which
starting from a physically admissible motion leads to a varied motion which is
still physically admissible (we also call such variations of motions physically
admissible);

2. one can try to find an interpretation of the thus found Euler–Lagrange condition
which accomodates physical intuition: such an interpretation may lead us to rec-
ognize them as a form of balance laws in which suitable constitutive equations
are replaced;26

3. one can try to find analytical solutions for initial and boundary problems for the
determined PDEs.

Clearly, in the époques in which computational tools were not very well developed,27 the
only reliable method for getting predictions was the analytical one, and many scientists
invested all their intelligence into pushing the frontiers of mathematical knowledge
forward to get as many closed form solutions as possible.28

The advent of modern and effective Von Neumann machines has very often made the
second group of three steps above redundant. It is somehow surprising that one of the

26 The reader is however warned that higher gradient action functionals, see e.g. [10, 26], may lead to more
boundary conditions for the same bulk equation. In this case, if one really needs to interpret
Euler–Lagrange equations as balance laws, then one has to accept that the same balance law may
associate with its localized (differential) form many boundary balances. This will induce another
proliferation of ad hoc assumptions.

27 Note, however, that analog computers have already been developed and used by the Hellenistic scholars,
as Ptolemaic systems of moving circles must be regarded as one of the first analog computers, see [21].

28 Exemplary efforts in this direction were performed by the Soviet school. For instance, the textbook by
Muskhelishvili is one of the most famous sources of analytical solutions in the theory of elasticity (see
[59]). Note that these solutions are very useful as benchmarks for testing numerical codes.
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most passionate champions29 of non-linear continuum mechanics could not forecast
the impact that these machines could have in the growth of its applications to real
world problems. All these applications are simply inconceivable if one decides to use
exclusively closed form solutions.

8.4.4 How Can We Include Dissipation in the Modelling? The Rayleigh–Hamilton
Dissipation Functional

Even if one can model some dissipative phenomena by using a least action principle (see
for some interesting examples [64]), it is debatable if this principle is general enough
for formulating all the models which are needed in mechanics. Since, at least, in the
works by Lagrange and Piola (see [15, 27, 29, 30]) the possible controversies have been
avoided by formulating a weaker version of it, i.e. the principle of virtual velocities, later
called the principle of virtual work. The beautiful postulation of continuum mechanics
by Paul Germain (see [13, 56]), is very similar to those used by Sedov, Toupin, Mindlin
and Rivlin, among many others (see [28]), and is exactly based on the principle of virtual
velocity (or virtual work). Note that this principle, in its modern form, was proposed by
D’Alembert exactly to try avoiding the mentioned debates.

To include dissipative phenomena in the picture it is possible to proceed as follows
(following Lagrange and D’Alembert):

1. describe only the conservative part of a phenomenon by an action functional;
2. then, calculate the first variation of the postulated action, which is interpreted as

the Lagrangian30 part of the virtual work expended on admissible variations of
motion superimposed on the real motion;

3. together with the thus found first variation, additional linear31 functionals must
be postulated, which are defined on the same set of virtual velocities: these
functionals are conceived to model dissipative phenomena by introducing the
virtual work which they dissipate on every admissible variation of motion; they
are suitable definite positive functionals and are called Rayleigh dissipation
functionals;

4. the sum of the Lagrangian virtual work and of the dissipative virtual work is
postulated to be vanishing for every physically admissible variation of motion
(Hamilton–Rayleigh Principle).

We will mathematically formulate the just discussed postulation procedure in the fol-
lowing sections, and we will present it in a rather general way in the Section 8.6 of this
chapter. A careful inquiry into the historical development of continuum mechanics (see
e.g. again [28, 29, 61, 62]) shows that this procedure is exactly the one which has been
followed in the pioneering work by Lagrange, Piola, Hamilton and Rayleigh.

29 See [60]: it is, however, worthwhile in this context, to repeat that Truesdell did not consider variational
principles as an important subject in continuum mechanics.

30 Which is not necessarily conservative, as, for instance, the Lagrangian density of action could be time
dependent.

31 Some scholars objected that in this way one is not considering nonlinear systems (sic!).
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The logical connection between the principle of least action and the principle of
virtual velocities clearly justifies the choice of classifying this last principle in the
set of variational principles.

The procedure of integration by parts which produces mathematically the required
consistent boundary conditions is applicable in exactly the same way for models formu-
lated by using either the principle of least action or the principle of virtual velocities.

The following remarks are appropriate here:

• Although we have already discussed the subsequent issue in many places, we feel
a reiteration here is warranted for emphasis and clarity. Indeed, the opponents
of generalized continuum theories sometimes state not only that these theories
lack logical consistency with the second principle of thermodynamics (see the
literature originated by [55]) but also claim at the same time that the boundary
conditions to be chosen for generalized continua are physically meaningless and
are mathematically inconsistent. Their statement is related to the mistaken belief
that Cauchy treatment is universally valid for all materials, and not to the fact that
the treatment of boundary conditions due to Cauchy is not universally valid and
applies only to a particular constitutive class of materials.

• As a matter of fact, (this is a point of view elegantly presented by Hellinger,
see [32–35, 38], but also in [62]) variational principles, as a heuristic tool for
effectively finding the most predictive mathematical models present many advan-
tages. Among others, preeminent is their capability to deduce the boundary con-
ditions which are most appropriate for a given constitutive class of materials.
What happens is that if one does not want to use a variational principle, it can
be nearly impossible32 to determine the class of boundary conditions logically
consistent with those bulk evolution equations which it was decided to postulate
independently (see Pluralitas non est ponenda sine necessitate, Section 8.3).
Instead, purely on logical bases, variational principles lead systematically to well-
posed mathematical problems, if the postulated functionals are well-behaving.

• Let us now call Lagrangian systems those systems whose evolution is governed by
a least action principle. Obviously (see the characterization given by Helmholtz
conditions as discussed e.g. in [63]), not every system of ordinary differential
equations or of partial differential equations (with appropriate boundary condi-
tions) can be regarded as a stationarity condition for an action functional. This cir-
cumstance has led many scholars to conclude that dissipation phenomena cannot
be described by means of a least action principle. In some ways this is, in a strict
sense, true. However, it has been conjectured that a dissipative system of evolution
equations can always be regarded as a system which is approximating and/or
simplifying another one which is Lagrangian. This is still a controversial question,
and here we will simply give some conjectural hints concerning the solution
of the related mathematical problems. One could obtain a non-Lagrangian sys-
tem starting from a Lagrangian one by using, at least, two specific procedures:
i) by neglecting some terms in the original Lagrangian action functional, thus

32 Unless the correct result, which has been obtained using other methods, is already known.
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obtaining an “approximation” which is not Lagrangian,33 ii) by noting that the
non-Lagrangian system actually is a subsystem of a larger system which has many
more degrees of freedom and is itself Lagrangian. Dissipative phenomena may
in this case only be apparent (see [1]), as the energy which is apparently dissi-
pated may be trapped in the hidden degrees of freedom and return to the visible
degrees of freedom only after the elapse of the Poincaré time, which may be very
large.

We finally note that the statement: “a variational principle can be used only for non-
dissipative systems” has frequently been disproved in the literature: we cite here for
instance [12], dealing with crack opening phenomena. As in the literature it is not clearly
established if the least action principle can or cannot encompass all “non-conservative”
phenomena, to make this presentation expedient, we assume a postulation based on
the Hamilton–Rayleigh principle, which allows for a unified treatment of dissipa-
tive and non-dissipative systems. We consider it appropriate to classify the Hamilton–
Rayleigh principle as a variational principle, although in the literature this choice is
sometimes disputed. We will follow what seems to us the preference of those who
appear to be the most authoritative scholars. Therefore, it is appropriate to describe
as “variational” the postulation schemes based upon the principle of virtual work or on
the Hamilton–Rayleigh principle, and not limit the use of this adjective to the models
based exclusively on the least action principle.

8.5 More about Action Functionals

Lagrange was one of the first to give, in his Mécanique Analytique, some historical
remarks about theoretical mechanics preceding a technically complex and deep text-
book. As a consequence, the great majority of textbooks in calculus of variations and/or
in variational and energy principles in applied sciences (see e.g. the beautiful text by
Lanczos [16]), begin and/or are concluded with some historical considerations and
discussions. In the present text34 we have followed this tradition, interweaving the his-
torical reconstructions throughout the discussions in a diffused manner while presenting
the subject.

We believe that the fundamental idea underlying the principle of least action is very
old and, possibly, dates back to Hellenistic science (see [21]). We have found (see [41])
a quote from some fragments of an Epicurean philosopher:

For this would be agreed by all: that Nature does nothing in vain nor labours in vain.
Olympiodorus in Commentary on Aristotle’s Meteora
as translated by Ivor Thomas in the Greek Mathematical Works Loeb Classical Library;

33 A typical example is given by the Cattaneo equation for heat propagation which, after some
approximation, becomes the classical Fourier equation for diffusion (see again [64]).

34 Hopefully the reader will not be too averse to this choice!
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which could be one of the ancient sources of the famous other quote:

La nature, dans la production de ses effets, agit toujours par les voies les plus simples.
Pierre de Fermat. 35

As the second quote has been used to justify from a higher philosophical viewpoint
the formulation of variational principles, and as the Epicurean school is known to have
produced important scientific contributions in theoretical mechanics, we conjecture that
Olympiodorus (see his quote above) formulated a version of the least action principle.

8.5.1 Lagrangian Action as a Measure of Simplicity in Nature

The structure of the least action principle needs to be clarified, as all other variational
principles are formulated by generalizing its formal structure. We, therefore, must
describe at first how, based on the principle, a stationarity condition was found, and how
it was used to solve specific problems, thus formulating the equations to forecast “real
motions.”

In the entries [98], the formal definitions required to present the modern structure
of the corresponding mathematical theory are presented in a precise and concise way.
There, it is seen that the space of configurations is a topological space further endowed
with the structure of a manifold with charts in Banach spaces.36 However, in the fol-
lowing pages we prefer to present a generalization of Lagrange’s and Piola’s results
without invoking such mentioned sophisticated concepts. Indeed, in order to be correct
from a historical point of view, it has to be stated explicitly that Banach (or Fréchet)
spaces were invented long after the masterpieces by Lagrange and Piola were written.
Therefore, in these masterpieces the concepts of Fréchet and Gateaux derivatives in
Banach spaces were applied long before their explicit formulation. As Lagrange and
Piola could master and use the underlying basic concepts and successfully proceed in
their investigations we will follow their steps.

Simplicity of the Nature action means that: “the motion minimizes the
Lagrangian action.”

In the discussion up to now, neither has a mathematical structure been assumed
for MA(
0, 
f ) nor the form of the action functional been specified. On the other
hand, in order to produce predictions, it is necessary to calculate the solutions of the
minimization problem for the postulated action. Therefore, some further elaborations
about the action functional are clearly needed. To proceed further, similarly to what
is done in [17] and [18], we follow Lagrange [15, 30], and we limit our attention
to a particular class of functionals defined on MA(
0, 
f ). More precisely, we
assume that a Lagrangian action density function (see the following formula (8.4))
is defined and that action can be calculated as its space-time integral (see the following

35 For a detailed analysis of the sources of this quote (Nature, in the production of its effects, always acts in
the simplest ways.) and also for a very lucid analysis of the history of the calculus of variations we refer to
the beautiful book by Freguglia and Giaquinta [66].

36 Although even more abstract settings have been conceived, which may be useful in some applications, we
can content ourselves with this degree of generality.
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formula (8.5)).37 Such particular action functionals are usually called Lagrangian
functionals.

Let 
σ(xμ) be any set of n tensor fields defined on R
m, with σ = 1, . . . n and

μ = 1, 2, . . . , m. As the reasoning which will be developed holds for fields defined in
higher dimension spaces, we will not immediately limit our considerations to the case
m = 4.

The Lagrangian action density is a function of the form:38

L

(
xμ, 
σ ,

∂
σ

∂xμ

)
, (8.4)

and the corresponding Lagrangian action functional has the form:

A(
σ(·)) =
ˆ

T

L

(
xμ, 
σ ,

∂
σ

∂xμ

)
dV , (8.5)

where T⊂ R
m, dV is the Lebesgue measure, and the coordinates xμ are used to label

the generic point x in T .

• We will assume below that T is compact and that its boundary is suitably regular:
Lipschitz continuous, for instance. In this case one is assured that i) the set C∞(T )
of infinitely differentiable functions defined in T can be endowed with the Fréchet
metric (see e.g. [67, 68]), and ii) it is possible to define the trace of the functions
belonging to Sobolev spaces (see e.g. [69]).

Following tradition we denote the dependence of the action functional A on the fields

σ by introducing the symbol A(
σ(·)), which indicates that its value depends on the
whole fields and not on their values at a specific point x having coordinates xμ.

To use differential calculus in order to define continuity of the Lagrange action func-
tional, it is obviously necessary to introduce a topological structure in MA: this is
equivalent to specifying mathematically the meaning of the expression: “two motions
are close”. Moreover, it is necessary to calculate minima of the introduced functional,
typically, by calculating its first variation and by imposing that this variation is vanish-
ing. Further, the following mathematical concepts:

• finite variation of the independent variable;

• first variation of a functional;

• order of infinitesimals for remainders in Taylor expansions for a functional and
the consequent concept of infinitesimal variations;

introduced in classical mathematical analysis (dealing with functions defined in a subset
of R

k), can be generalized to the present context, where the domain of the action
functional is the set of motions MA.

37 In order to compare the discrete and continuous cases see Chapter 4
38 The case in which higher gradients of fields appear in the Lagrangian action density will be considered

later.
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8.5.2 Variation of the Action Functional

A necessary condition for a motion to be a minimizer of the action is that the first
variation of the action, as calculated in correspondence of the motion, is vanishing. It is
therefore necessary to define and calculate the first variation of Lagrangian functional.

A motion minimizing the action has to be searched for among the motions for
which the first variation of the action vanishes.

The method for finding the necessary conditions to be fulfilled by a motion in order
for it to be a minimizer of a Lagrangian functional was conceived by Lagrange when
he was only 19 years old, and it was used systematically in all his long scientific career
(see [2] and the last chapters of [30]). These necessary conditions consist in a system of
differential equations complemented by some boundary conditions.39 They are called
Euler–Lagrange conditions relative to the considered action functional.

We may assume that the set of functions MA in which we are seeking the minimiz-
ers of action is such that its constituting functions have an assigned value on a part
∂dT ⊆ ∂T of the boundary of T . These boundary conditions are called “essential”
boundary conditions, as they are assigned a priori in the formulation of the minimization
problem.

We now consider the variations εησ(x) of the considered fields 
σ(x) (ε will be
assumed soon to be small):


̃σ(x) = 
σ(x)+ εησ(x), (8.6)

where the functions ησ(x) are called virtual variations of the fields 
σ(x): they must
be such that both 
σ(x) and 
̃σ(x) belong to the set MA of admissible fields. In addi-
tion, virtual variations must be vanishing on ∂dT . These are the only restrictions to be
assumed for the virtual variations, which are otherwise completely arbitrary.

Many scholars have shown a certain resistance to the concept of virtual variations.40

Again, they claim that this is an unphysical concept. In [22], the reader will find a
beautiful presentation of the Hellenistic roots of this concept, and will surely appreciate
its physical content, as understood already by Archimedes.

Instead of referring to any kind of physical understanding, we can here remark that, in
order to verify that a given motion is a (possibly local) minimizer of the action, the value
of the action must increase if another motion, close to the minimizer, is considered. If the
minimizer is 
σ(x), then for every 
̃σ(x) obtained, varying it with whatever variation
εησ(x) (ε being small enough), we have that

A(
σ(·)) ≤ A(
̃σ(·)).

39 The derived conditions are ordinary differential equations for discrete systems and partial differential
equations for continuous systems. Obviously boundary conditions are obtained only for continuous
systems.

40 The choice of the word “virtual” may have induced these scholars to believe that these variations are not
“real,” therefore “not physical.” We will investigate the sources of the presented theory to try to discover
who first introduced this nomenclature and how he justified it.
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Therefore, for the considered varied fields, the finite variation of the action functional
must fulfil the inequality:

�A =
ˆ

T

L

(
xμ, 
̃σ ,

∂
̃σ

∂xμ

)
−
ˆ

T

L

(
xμ, 
σ ,

∂
σ

∂xμ

)
≥ 0. (8.7)

The definition of first variation of the Action functional is given by

�A =: δA+O
(
ε2
)

, (8.8)

where we assume that δA depends linearly on the variations εησ(xμ), and therefore

δA = O(ε).

By expanding the Lagrangian action density into the integral in (8.7), we get

δA(ησ(·)) = ε

ˆ
T

∑
σ

⎛
⎝ ∂L

∂
σ
ησ +

m∑
μ=1

∂L

∂
(
∂
σ/∂xμ

) ∂ησ
∂xμ

⎞
⎠ . (8.9)

• The functional δA is defined in terms of the set of admissible variations, and it is
usually assumed to be a continuous functional in this variable. Using the language
of functional analysis, the functional A is continuous and Fréchet differentiable.41

• We will assume that the set of infinitely differentiable functions C∞(T ) is
included in the set of admissible variations.

• Moreover, we will assume that its inclusion in the space of admissible variations,
when C∞(T ) is endowed with the Fréchet metric dF , is continuous. This request
implies that the functional defined in (8.9), once restricted to the metric space
(C∞(T ), dF ), defines a distribution in the sense of Schwartz (see [70]).

• Following the definition given by Schwartz, Eq. (8.9) defines a distribution of
order 1: i.e. a distribution which can be represented as the first derivative of a
measure. Theorem XXVII on page 91 in [70] states that, for a generic distribution
D with compact support, there exists a finite natural number N such that D is
an N th order derivative of a measure. This circumstance strongly motivates the
introduction of field theories in which the Lagrangian depends on N th order field
gradients (see [7, 8, 10] for more details).

Now, we assume that the Lagrangian density L and the fields which are minimizing the
action are regular enough to perform integration by parts of the RHS of (8.9). The reader
aware of the basic ideas of the theory of distributions will recall that it is always possible
to calculate the (weak) derivative of a distribution, and therefore that integration by parts
in the sense of distributions is always possible. This circumstance will be exploited
below, and will render the use of space of distributions the most appropriate choice for
framing the study of the properties of action functionals.

41 If the space of configurations is a Fréchet manifold, then continuity of the functional A can be defined as
there is a topology defined in it. Also its derivative is defined because of the local topological vector space
structure. The interested reader is referred to [67, 68].
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Proceeding as if we were apparently unaware of the existence of the concept of
distribution, and therefore following the steps of Lagrange, we integrate by parts the
RHS of Eq. (8.9) and use the fact that ησ is vanishing on ∂dT , so obtaining:

δA = ε

ˆ
T

∑
σ
ησ

⎛
⎝ ∂L

∂
σ
−

m∑
μ=1

∂

∂xμ

(
∂L

∂
(
∂
σ/∂xμ

)
)⎞⎠

+ ε

ˆ
∂T/∂dT

∑
σ
ησ

m∑
μ=1

∂L

∂
(
∂
σ/∂xμ

)Nμ, (8.10)

where ∂T/∂dT is the set difference between ∂T and ∂dT , and where the vector field
Nμ denotes, at every point, the external unit normal of ∂T/∂dT .

It is now necessary to remark that, as a consequence of (8.7), of (8.8) and of the
linearity of the functional δA, we obtain that

(∀ησ(·)) (δA(ησ(·)) ≥ 0)⇒ (∀ησ(·)) (δA(ησ(·)) = 0) . (8.11)

Because of the arbitrariness of ησ in the obtained stationarity condition, one can
deduce that for all values of σ:

∂L

∂
σ
−

m∑
μ=1

∂

∂xμ

(
∂L

∂
(
∂
σ/∂xμ

)
)
= 0, ∀x ∈ T , (8.12)

m∑
μ=1

∂L

∂
(
∂
σ/∂xμ

)Nμ = 0, ∀x ∈ ∂T/∂dT . (8.13)

The boundary conditions (8.13) obtained as a consequence of stationarity of action
functional are sometimes called “natural” boundary conditions.42

When inside the domain T there is a discontinuity oriented material surface � (whose
unit normal field is denoted Nμ) for the derivatives of the fields ∂L

∂(∂
σ/∂xμ)
then, by

performing integration by parts on both sides of such a discontinuity, we get

m∑
μ=1

[∣∣∣∣∣ ∂L

∂
(
∂
σ/∂xμ

)
∣∣∣∣∣
]

Nμ = 0, ∀x ∈ �, (8.14)

where [| (·) |] is the jump of (·) across the surface �. These conditions produce so
called “moving boundary conditions” for the considered minimization problem. Some
difficulties arise when one wants to get “free moving boundary conditions,” and we
postpone the presentation of a general treatment which is able to include them.

8.5.3 The Case of Minimizing Motions: Fields Depending on Space–Time (m = 4)

The formulas in the previous subsection are valid in the more general case of fields 


defined on R
�. While it is possible to consider, more generally, fields defined on smooth

manifolds embedded in R
�, this generalization does not need any major additional

effort, and will, therefore, not be considered explicitly here for simplicity.

42 Again, we believe that the historical roots of this nomenclature should be investigated.
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Let us consider the case m = 4, where the kinematic fields depend on the reference
space and time coordinates x = (

xμ
) = (X1, X2, X3, t) of each material particle

constituting the considered continuum. For the sake of simplicity we assume that the
domain T is a 4-dimensional space–time, whose 3D-volume section V is the same
for each time instant t ∈ [

t0, tf
]
. From now on, we systematically use the notation

presented in [26]: in particular, we use capital letters for denoting the coordinates in the
reference configuration, and for the indices used to label vector and tensor quantities in
the reference configuration. We believe Levi-Civita tensor notation to be indispensable
for the clarity of presentation. Clearly, none among the other possible notations which
were tried to avoid some of the most cumbersome aspects is efficient enough to deal
with the most complicated tensor fields needed in the theory of generalized continua.

In what follows, the set of kinematical descriptors 
 must include (but in gen-
eral it does not reduce to!) the placement field χ, which maps the material point
X = (

X1, X2, X3
)

into the position x = (
x1, x2, x3

)
which it is occupying at every

instant t .

Strong and weak formulations of action stationarity conditions
If we consider isochronous motions as admissible motions, then the admissible virtual
variations of motion must fulfil on the time boundary the conditions

ησ(X1, X2, X3, t0) = ησ(X1, X2, X3, tf ) = 0.

Also on ∂dV , i.e. on the subset of the boundary ∂V of V , where the essential space-
boundary conditions are assigned, we have that

ησ(X1, X2, X3, t) = 0, ∀(X1, X2, X3) ∈ ∂dV , ∀t ∈ [t0, tf
]

.

Particularizing to the case of fields depending on space and time, and by using the
Fubini Theorem for decomposing space–time integrals (we note again that V is a sub-
domain of the reference frame and does not depend upon time, thus fulfilling the decom-
position hypothesis of the Fubini Theorem), we find that (8.9) becomes

δA(ησ(·)) = ε

ˆ tf

t0

dt

ˆ
V

(
∂L

∂
σ
ησ +

3∑
A=1

∂L

∂
(
∂
σ/∂XA

) ∂ησ

∂XA

+ ∂L

∂ (∂
σ/∂t)

∂ησ

∂t

)
dV . (8.15)

• In the case under study, the quantity L has the dimensions of an energy per
unit volume and, therefore, A(
σ(·)) is assumed to have the dimensions of
[energy][time] or [momentum][length].

• The quantity δA(ησ(·)) can be interpreted as the virtual variation of action
needed for passing from a motion 
σ(·) to its varied motion 
σ(·)+ ησ(·).

As a consequence of the statement (8.11), from the principle of least action it is possible
to deduce the following weak condition of stationarity of the action functional.
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For every admissible variation of motion the first variation of action is zero,
expressed as:

(∀ησ(·)) δA(ησ(·)) =
ˆ tf

t0

dt

ˆ
V

(
∂L

∂
σ
ησ +

3∑
A=1

∂L

∂
(
∂
σ/∂XA

) ∂ησ

∂XA

+ ∂L

∂ (∂
σ/∂t)

∂ησ

∂t

)
dV = 0. (8.16)

By simply particularizing the local conditions (8.12), (8.13) and (8.14) we get the fol-
lowing set of local conditions (the index σ is varying in the set {1, 2, . . . , n}):

∂L

∂
σ
−

3∑
A=1

∂

∂XA

(
∂L

∂
(
∂
σ/∂XA

)
)
− ∂

∂t

(
∂L

∂ (∂
σ/∂t)

)
= 0,

∀X ∈ V , ∀t ∈ [t0, tf
]

(8.17)

3∑
A=1

∂L

∂
(
∂
σ/∂XA

)NA = 0, ∀X ∈ ∂V/∂dV , ∀t ∈ [t0, tf
]

(8.18)

3∑
A=1

[∣∣∣∣∣ ∂L

∂
(
∂
σ/∂XA

)
∣∣∣∣∣
]

NA = 0, ∀X ∈ �. ∀t ∈ [t0, tf
]

(8.19)

These last conditions are a set of partial differential equations which are verified by
sufficiently regular minimizers of action. They represent the set of Euler–Lagrange
conditions for stationarity of the action.

Note that:

• The search for solutions to the set of Eqs. (8.17), (8.18), (8.19) verifying the
initial and the essential boundary conditions represents the existence problem of
mathematical physics, as described for instance in [71]. This classical problem
is often called the strong form of initial and boundary conditions problem for
partial differential equations. The adjective strong is used referring to the fact
that, in order to formulate it, the existence of derivatives of unknown fields is
required.

• In the strong form of the existence problem of mathematical physics a space
divergence operator and a time derivative appear, suggesting that it may represent
a law of conservation of a certain quantity. This quantity is sometimes called the
dual in energy of the physical quantity expressed by the field 
σ . For instance,
if the field 
σ coincides with placement, then its dual in energy is what is called
force, as the product of force with the variation of placement (i.e. displacement)
is a work.

• The postulation of mechanics based on Balance Equations starts by assuming a
set of conservation laws either in their strong form or in an integral form derived
by integrating them and applying to the divergence theorem.
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• Many closed form solutions have been obtained for several of such problems.
However, the most effective framework in which one can discuss the existence
problem of mathematical physics is represented by what is called its weak form.
Actually, it is possible to prove well-posedness problems for the weak form given
in (8.16), while it is sometimes much more arduous to prove similar results while
dealing with well-posedness problems in the strong form.

• The last remark suggests another conceptual weak point of the choice of basing
postulations of mechanics on balance laws. Even when one starts from such
postulations, there is a need to move to a weak form of balance laws, i.e. to a
form of variational principle. Therefore, Occam’s razor indicates that postulations
based on variational principles are preferable.

• Numerical integration methods are based upon the weak form of the existence
problem in mathematical physics, further underlining the significance of vari-
ational principles. Notably, numerical analysts, generally, view mathematical
physics as an interesting source of variational principles.

A condition deduced from the action stationarity condition useful for
formulating more general variational principles
The least action principle must be extended if one wants to model dissipative phenom-
ena. We have already outlined (see the previous discussion about this point in Section
4.4) the possibilities which have been explored in the literature. In this section and in the
following ones we want to substantiate the previous considerations with some technical
details. In order to generalize the least action principle we first investigate some of its
equivalent formulations that reveal possible directions towards the desired aim.

We begin by manipulating the term including the time derivative appearing on the
RHS of (8.15) by sequentially applying the Fubini Theorem and integration by parts,
and considering isochronous variations to find that

ˆ tf

t0

ˆ
V

(
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∂ (∂
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∂ησ
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dtdV =
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As a consequence, Eq. (8.15) becomes

δA(ησ(·)) = ε

ˆ tf

t0

dt

ˆ
V

((
∂L

∂
σ
− ∂

∂t

(
∂L

∂ (∂
σ/∂t)

))
ησ

+
3∑

A=1

∂L

∂
(
∂
σ/∂XA

) ∂ησ

∂XA

)
dV . (8.20)
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It is useful now to introduce the quantity (with obvious notation)

δW(ησ(·, t); t) :=
ˆ

V

((
∂L

∂
σ
− ∂

∂t

(
∂L

∂ (∂
σ/∂t)

))
ησ

+
3∑

A=1

∂L

∂
(
∂
σ/∂XA

) ∂ησ

∂XA

)
dV . (8.21)

The dimensions of this introduced quantity are those of work. It is expedient to label the
quantity as the “virtual variation of work” or, shortly, the “virtual work” needed at
instant t for passing from a motion 
σ(·) to its varied motion 
σ(·)+ησ(·). Needless to
say, the virtual variation of work depends linearly on the variation of motion.43 It has to
be explicitly remarked that the virtual work functional maps virtual displacements
depending on space variables only, obtained by blocking the time variable in the virtual
variation of motion, into real numbers. However, because of its definition, the virtual
work functional depends explicitly on the time variable, that is, at different instants we
have different functionals. For this reason, in the symbol δW(ησ(·, t); t) the time variable
appears twice. By using the definition just introduced, the virtual variation of action can
be written in the symbolic form of Lagrange:

δA(ησ(·)) = ε

ˆ tf

t0

δW(ησ(·; t))dt . (8.22)

Let us now consider an interesting consequence of the stationarity condition

δA(ησ(·)) = 0 , (8.23)

which is valid for every admissible isochronous virtual variation ησ . To do so, we must
recall a localization argument which was first developed by Lagrange. This argument
has been exploited much beyond the initial intentions which had motivated Lagrange,
as it became the conceptual basis of finite element theory and method. It is based on the
concept of a mollifier which we briefly introduce here for the sake of self-consistency.

(Positive) Mollifiers in the time variable. A function ζ(t) having as compact support
the interval [−α,α] is a mollifier if it is such that

• i) ζ(t) is infinitely differentiable with respect to the variable t ,

• ii)
´
R
ζ(t) = 1,

• iii) (∀t) (ζ(t) ≥ 0) ,

• iv) lim
α→0

α−1ζ(tα−1) = δD(t , 0).

In point iv) of the above definitions, the symbol δD(t , 0) denotes the Dirac delta centered
in 0, and the limit is in the sense of distributions. The interested reader is referred to [73]
for more details.

43 We want to make this point clear to the supporters of balance postulations, who remain skeptical about
variational principles. Obviously, the virtual variation of work DOES NOT depend linearly on the motion,
as it depends linearly on the variation of motion. Therefore, the objection that the principle of virtual
work, as will be formulated later, seems to be valid only for linear systems is very naive.
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By using time mollifiers it is possible to prove that:
If the stationarity condition (8.23) holds then, in every time instant, the virtual work

vanishes for every admissible (in particular vanishing on ∂dV ) variation ξσ (virtual
displacement) which depends on space variables only. Thus, we can state that (8.23)
implies: (∀t ∈ [t0, tf

]) (∀ξσ(X1, X2, X3)
)

(δW(ξσ; t) = 0) . (8.24)

The principle of virtual work (or virtual displacements) states that the motion of
a system is characterized by imposing that (8.24) holds.

The principle of virtual velocities is a reformulation of the principle of virtual
work. The generic virtual displacement is given by ξσ = vσdt , using the generic virtual
velocity field vσ . If, instead, the virtual velocity is used directly in the linear functional
δW , then the formulation of the principle of virtual powers is obtained.

With the introduced nomenclature we can state that:

If the virtual work is given by (8.21), the principle of least action implies the
principle of virtual work.

The proof of this statement can be easily obtained. Let us consider the following
admissible virtual variations of motion constructed by multiplying a mollifier with an
admissible virtual displacement:

ησ(X1, X2, X3, t) = α−1ζ(
(
t − t

)
α−1)ξσ(X1, X2, X3) . (8.25)

For every t we have

0 = δA(ησ(·)) = ε

ˆ tf

t0

δW(α−1ζ(
(
t − t

)
α−1)ξσ(X1,X2,X3); t)dt

= ε

ˆ tf

t0

α−1ζ(
(
t − t

)
α−1)δW(ξσ(X1,X2,X3); t)dt ,

where the second equality holds because the function ζ depends only upon the time
variable, and the virtual work functional is defined for virtual displacements that
depend only upon space variables, such that the linearity of the functional δW can be
exploited. To conclude the proof it is enough to calculate the limit for α tending to zero
in the previous equality, and recalling the definition of the Dirac delta:

0 = lim
α→0

ˆ tf

t0

α−1ζ(
(
t − t

)
α−1)δW(ξσ(X1,X2,X3); t)dt = δW(ξσ(X1,X2,X3); t).

8.6 The Principle of Virtual Work

In the previous section we have noted that starting from the principle of least action,
and using a time-localization argument, a necessary condition to be verified by motions
minimizing the action can be found.

Such a necessary condition is the statement given by (8.24). Although the statement
has been proven as a theorem starting from the condition of stationarity of action, we
call it “the principle of virtual work.”
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Calling the thesis of a theorem seems rather paradoxical, and we must clarify this
apparent paradox. The theorem which we have proven is based on the assumption that
the virtual work is given by the expression (8.21), which is a specific expression derived
starting from a Lagrangian density function and by calculating the first variation of the
corresponding action functional. The result described in the previous section supplies
a heuristic guide to finding the postulation process on more general basis. Indeed, as
already discussed, there are some unsolved difficulties to be confronted in order to
eventually apply the least action principle to model dissipative systems.

8.6.1 General Statement

Therefore, as already done by Lagrange and by Piola, one can, being inspired by the
structure of the virtual work functional as obtained in the particular case of systems gov-
erned by the minimization of action, postulate a more general expression than the one
given by (8.21) and ask that at every instant and for every virtual displacement the total
virtual work expended on the virtual displacement must vanish. The papers [13, 56, 65]
by Paul Germain are very clear and manage to present this idea in a comprehensive way.

We assume that, in general, the virtual work functional can be split into three
distinct functionals.
These functionals are:

• The inertial virtual work δWiner (ξσ; t),

• the internal virtual work δWint (ξσ; t), and

• the external virtual work δWext (ξσ; t).

A specific continuum model is formulated by choosing the specific forms of these three
functionals.

An important warning on the symbol δW.
A symbol denoting any kind of virtual work has traditionally included the symbol δ. This
notation is suggestive of the process which originally led D’Alembert and Lagrange to
introduce the concept. If the system is Lagrangian, i.e. if its evolution is governed by
a least action principle, then the virtual work functional is obtained by considering the
first variation of action. This means that the linear functional expressing virtual work
is, in some sense, an exact differential. The precise sense to be given to the expression
“exact differential” in this context is the following:

• there exists a Lagrangian density of action such that the virtual work functional
is given by (8.21), which derives from the first variation of action given by equa-
tion (8.20). In this case, the virtual work functional has to be defined in terms
of displacement variations which do not depend on time. Therefore, the time-
integration-by-parts transforming (8.20) into (8.21) is needed.

Of course we do not want to restrict ourselves to the case of virtual work
functionals which are “exact,” i.e. can be derived from a Lagrangian.
Indeed we want to consider, in general, systems for which the virtual work functional
cannot be expressed in terms of a variation of an action. Therefore, in general, the
inclusion of the symbol δ in the expression δW is an abuse of notation, which can be
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misleading. In reality, the symbol δ has to be understood as referring only to the “small”
variation of the argument of the work functional.

Roughly speaking the functional δW gives the expended work of all active inter-
actions in correspondence with the virtual displacements ξσ . This functional depends
linearly on the virtual displacements and, in general, nonlinearly on the actual con-
figuration of the system, in a way which must be specified by means of constitutive
equations.

In the case of Lagrangian systems, i.e. when the expression of virtual work derives
from the action functional expressed in terms of a Lagrangian density L, we assume the
following identifications for the virtual work functionals:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

δWiner(ξσ; t) =
ˆ

V

(
− ∂

∂t

(
∂L

∂ (∂
σ/∂t)

))
ξσdV .

δWint(ξσ; t) =
ˆ

V

(
3∑

A=1

∂L

∂
(
∂
σ/∂XA

) ∂ξσ

∂XA

)
dV .

δWext(ξσ; t) =
ˆ

V

(
∂L

∂
σ
ξσ

)
dV .

(8.26)

By further particularizing the Lagrangian density L, i.e. by regarding it as the sum of
a kinetic energy plus an external potential energy plus an internal energy, as done by
Hamilton, one can make the previous identifications even more transparent.44

The reader is invited to consider the previous formula (8.26) only as the most simple
(and maybe the most useful) example of virtual work functionals.

Being inspired by and generalizing the action stationarity condition we can
now formulate the

PRINCIPLE OF VIRTUAL WORK

The evolution of a mechanical system is determined by:

1. Choosing its space of configurations;
2. Postulating the form of inertial, internal and external virtual work functionals

without necessarily assuming that there exists a Lagrangian which allows for
the representation given by (8.26).

3. Assuming that, at any time instant, the total virtual work vanishes for every
admissible virtual displacement, expressed as(∀t ∈ [t0, tf

]) (∀ξσ(X1, X2, X3)
) (

δWTOT(ξσ; t)

= δWiner(ξσ; t)− δWint(ξσ; t)+ δWext(ξσ; t) = 0
)

. (8.27)

8.6.2 Principle of Hamilton–Rayleigh

In the previous sections we have seen that the range of applicability of the principle of
least action is somehow limited. This circumstance was understood, among others, by
Lagrange and Piola. This was the reason why they preferred to base their postulation
schemes on the principle of virtual work.

44 Maybe actually these identifications simply become more familiar.
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In order to get a description of the dissipative phenomena occurring in systems to be
modeled, it is possible to postulate the existence of a Rayleigh dissipation functional R.
This functional is a map which associates, at every instant t , a positive real number with

every ordered set of space-fields
(

σ(·; t), ∂
σ(·;t)

∂XA , ∂
σ(·;t)
∂t

, ∂
∂XA

(
∂
σ(·;t)

∂t

))
. Using the

symbols introduced in (8.21) with the same meaning, we write:

R
(


σ(·; t), ∂
σ(·; t)
∂XA

,
∂
σ(·; t)

∂t
,

∂

∂XA

(
∂
σ(·; t)

∂t

)
; t

)
∈ R

+.

We assume that the first variation δvR of R with respect to the variations of the field
∂
σ/∂t can be obtained keeping the fields (
σ , ∂
σ/∂xk) and the time instant t fixed.
Now the stationarity condition for the action functional is modified as follows:

PRINCIPLE OF HAMILTON–RAYLEIGH((∀t ∈ [t0, tf
]) (∀ξσ(X1, X2, X3)

)
(δW(ξσ; t) = δvR (ξσ; t))

)
. (8.28)

As an example, we consider the following dissipation functional, which has a similar
space structure to the action functional:

R
(


σ(·; t), ∂
σ(·; t)
∂xk

,
∂
σ(·; t)

∂t
,

∂

∂xk

(
∂
σ(·; t)

∂t

)
; t

)

=
ˆ

V

R

(
X1, X2, X3; t , 
σ(x; t),

∂
σ(x; t)

∂XA
,
∂
σ(x; t)

∂t
,

∂

∂XA

(
∂
σ(·; t)

∂t

))
dV ,

(8.29)

where R is the volume density of energy dissipation. Its first variation δvR can be
calculated as follows:

δvR (ξσ; t) =
ˆ

V

(
∂R

∂ (∂
σ/∂t)
ξσ +

3∑
A=1

∂R

∂
(
∂2
σ/∂t∂XA

) ∂ξσ

∂XA

)
dV ,

so that, after integration by parts, we get

δvR (ξσ; t) =
ˆ

V

(
∂R

∂ (∂
σ/∂t)
−

3∑
A=1

∂

∂XA

(
∂R

∂
(
∂2
σ/∂t∂XA

)
))

ξσdV

+
ˆ
∂V

(
3∑

A=1

(
∂R

∂
(
∂2
σ/∂t∂XA

)
)

NAξσ

)
dA.

As a consequence, we have that the strong form PDEs and boundary conditions of the
weak conditions (8.28) are

∂L

∂
σ
−

3∑
k=1

∂

∂XA

(
∂L

∂
(
∂
σ/∂XA

)
)
− ∂

∂t

(
∂L

∂ (∂
σ/∂t)

)

= ∂R

∂ (∂
σ/∂t)
−

3∑
A=1

∂

∂XA

(
∂R

∂
(
∂2
σ/∂t∂XA

)
)

,

∀X ∈ V ,∀t ∈ [t0, tf
]

(8.30)
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3∑
k=1

(
∂L

∂
(
∂
σ/∂XA

) − ∂R

∂
(
∂2
σ/∂t∂XA

)
)

Nk = 0, ∀X ∈ ∂V/∂dV ,∀t ∈ [t0, tf
]

(8.31)

3∑
k=1

[∣∣∣∣∣ ∂L

∂
(
∂
σ/∂XA

) − ∂R

∂
(
∂2
σ/∂t∂XA

)
∣∣∣∣∣
]

Nk = 0, ∀X ∈ �.∀t ∈ [t0, tf
]

(8.32)

where, as in the previous sections, discontinuities of the derivatives of the fields

∂L

∂
(
∂
σ/∂XA

) ,
∂R

∂
(
∂2
σ/∂t∂XA

) ,

may be concentrated on the surface �. Let us conclude by remarking that, when using
the Hamilton–Rayleigh principle, we just make use of a particular instance of the prin-
ciple of virtual work by assuming that

δWTOT(ξσ; t) = δW(ξσ; t)− δvR (ξσ; t) .

This assumption can be interpreted by stating that in the total work we distinguish a
Lagrangian part (which could describe the conservative45 interactions occurring in the
considered system) and a dissipative part, obtained with the Rayleigh functional.

Also, the Rayleigh functional may be split into an internal and an external part.
Consequently we can write,

δvRext (ξσ; t) =
ˆ

V

(
∂R

∂ (∂
σ/∂t)
ξσ

)
dV

δvRint (ξσ; t) =
ˆ

V

(
3∑

A=1

∂R

∂
(
∂2
σ/∂t∂XA

) ∂ξσ

∂XA

)
dV .

For a more detailed heuristic and physical insight into the Hamilton–Rayleigh principle,
the interested reader is referred to [98].

8.6.3 The Principle of Virtual Work as a Powerful Heuristic Tool: Lagrange, Cauchy
and Generalized Continua

Gabrio Piola, in his works (the first of which dates to 1824, see [24, 25, 27–29]), gave
himself the obligation to “continue the work which had been left unfinished by our
Schoolmaster [i.e. Lagrange] when death stopped his genius.” Indeed, Piola notes that,
in the last pages46 of the last edition ([15]) of the Mécanique Analytique, Lagrange had
established clearly the path to be followed for determining all equations of mathematical
physics starting from the principle of virtual work. The opinion of Piola is shared
by the editors of the mentioned edition of Lagrange’s works: in their foreword they

45 We repeat again here that non-conservative phenomena can also be included in some particular
Lagrangians.

46 NOTE II. Sur le mouvement de rotation, page 357.
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write: “In this work . . . Lagrange developed the law of virtual work, from which single
principle the whole of solid and fluid mechanics can be derived.”

In the already cited “NOTE II. Sur le mouvement de rotation, page 357” Lagrange
introduces those quantities which, once regrouped to form a tensor, have been called
Piola Stress. Piola in [27] develops the ideas of Lagrange, to such an extent that only
contemporary literature has managed to parallel it (see [25]). Indeed Piola introduces
the basic equations of what has been called in the present century “peri-dynamics,”
which he then particularizes to get the N th gradient continua (see [10]). Finally, in his
work dated 1845–48 ([27]), Piola proves that the results obtained by Cauchy in 1822–
1828 (see [75]) are more easily and elegantly obtained by using the methods devised by
Lagrange.

In any case, we believe that in the aforementioned note by Lagrange all the ideas and
methods, so deeply and masterfully presented by Piola, were already clearly present.
Unfortunately Cauchy did not realise the importance of that note. For sure its title
is somehow misleading: moreover Lagrange seems to have sketched it literally only
a few months before dying and it resembles rather a set of formulas with comments
of only few words. Instead of following Lagrange’s approach, Cauchy formulated his
continuum model basing his postulation on the balance of forces, by including contact
forces and by developing the celebrated tetrahedron argument. This argument proves,
from the postulated balance of forces, the existence of the Cauchy stress tensor field.
Note that this stress field is defined in the actual configuration, where balance of forces
is more naturally formulated: in this way Cauchy treatment of the concept of stress
departs from the natural surrounding framework of variational principles, which are
preferably formulated in the reference (sometimes called Lagrangian) configuration.

The ingenious procedure conceived by Cauchy has been the reason for which general-
ized continua were not considered in the main flow of research in continuum mechanics
for a long period. Even if the tetrahedron argument can somehow be generalized (for
instance to the case of higher gradient theories, see [76–78]), the postulation scheme
based on balances of force and angular momentum is not the most suitable tool for for-
mulating models more general than those developed by Cauchy. This fact was perfectly
clear to Piola, who presented clear arguments to support this point of view in his work
published in 1848.

The principle of virtual work is, indeed, suitable to formulate continuum models
which are much more general than those conceived by Cauchy. On the other hand,
Cauchy models have been considered nearly exclusively in the literature and, for this
reason, those models developed by relaxing one or another of his restricting assumptions
very often have been called generalized continua. We will prove below that the most
expeditious and efficient way to formulate these more general models is to use the
principle of virtual work and the related postulation scheme.

On the other hand, an accurate reading of the aforementioned note by Lagrange indi-
cates that Cauchy continua were also first invented in this way, and that Cauchy simply
found an equivalent way for formulating them. As this equivalence can be established
only in the particular case developed by Cauchy, we claim that the principle of virtual
work has to be preferred in any case.



360 F. dell’Isola, P. Seppecher, L. Placidi, E. Barchiesi, A. Misra

8.6.4 The Case of Cauchy Continua

As an illustration, we first discuss the most simple classical continuum model among
those which were introduced to study the deformation of bodies. Nobody should expect
that such a model, and similarly every other model, can include the description of all
possible deformation phenomena. Unfortunately, a group of scholars contributed to
propagating a belief to the contrary. Consequently, many mechanicians have adopted
the belief that the continua whose deformation energy depends only on the first gradient
of deformation (otherwise called Cauchy47 continua) are the only ones which may exist,
in the sense that they are the only continua which are logically consistent with the
second principle of thermodynamics. This belief had already been rebutted by Piola
in his Memoir of 1848.

Hamel–Noll theorem
We refrain here from presenting the tetrahedron argument developed by Cauchy. The
importance of this argument has been overestimated in continuum mechanics (this over-
estimation is evident in [57] and in the various comments found in [45]). Interestingly,
the overestimation has been based upon the apparently very general result which was
called the Hamel–Noll48 theorem in [79].

The theorem, remarkably, has been misinterpreted by Noll himself. He stated that, in
general, every contact force must be a force per unit area, and that this force depends
only on the normal of the contact surface. For reasons that remain obscure, this theorem
has been considered as the final justification of the non-existence of contact forces
concentrated on lines or on points. Needless to say, as with every other theorem, the
Hamel–Noll theorem is also based on some hypotheses. If these hypotheses are not
verified then, obviously, the theorem, as set out below, is not necessarily true:49

THEOREM IV (stress principle): There is a vector valued function s(x, n), where
x ∈ θt (B) and where n is a unit vector, such that

s(c; x) = s(x, n), (5.11)

whenever θt (c) has the unit normal n at x ∈ θt (c), directed towards the positive side of
the oriented surface θt (c), the orientation of θt (c) being induced by the orientation of c.

To this theorem the following footnote is added as commentary:
The assertion of this theorem appears in all of the past literature as an assumption.

It has been proposed occasionally that one should weaken this assumption and allow
the stress to depend not only on the tangent plane at x, but also on the curvature of the

47 An issue of terminology arises here: why did scholars add the qualifier “Cauchy” if all continua are
Cauchy continua?

48 Truesdell cared to underline that the proof of Hamel was “imperfect.”
49 Unfortunately, in [80] the starting hypotheses of the Hamel–Noll theorem are assumed to be the basis of

every conceivable continuum theory and, therefore, they are not explicitly repeated in its statement. This
state of facts induced many scholars to believe that these assumptions must be accepted always. This
attitude is to be deprecated but is unfortunately not new and can also be recognized in many scholastic
philosophers.
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surface c at x. The theorem given here shows that such dependence on the curvature, or
on any other local property of the surface at x, is impossible.50

While carefully reading the assumptions made by Noll in the pages preceding the
theorem statement and the following proof, one discovers that he accepts rather imme-
diately the assumption that in the considered continua both line and point contact forces
are vanishing. This point has been carefully discussed in [76–78]. It is therefore clear
that, in the framework of Noll’s treatment of contact actions, only surface contact actions
are possible. Moreover (see [76, 78]), contact line forces are possible if and only if
surface contact forces depend on curvature of the contact surface. The statement written
in the cited footnote by Noll is clearly false, and the great influence exerted by Noll in
continuum mechanics explains in part why the development of higher gradient theories
has lagged to the detriment of progress in mechanical sciences.

In conclusion, the Hamel–Noll theorem shows an interesting result valid for a specific
class of continua, which have been characterized by Piola in [27].

Cauchy continua: characterizations
There are several equivalent ways to characterize the particular constitutive51 class of
continua studied by Cauchy. First of all, for Cauchy continua the set of kinematical
fields 
 reduces to only the placement field χ. By introducing a vector basis and an
origin in the actual configuration, the placement field is given by its component fields
χi(X). It can be proven (see e.g. [10, 77, 78]) that the two following statements are
equivalent:

1. Piola’s characterization of Cauchy continua. The internal work δWint (ξ; t)
functional has the following form:

ˆ
V

P (X; t) : ∇Xξ dV =
ˆ

V

P A
i (X; t)

∂ξi

∂XA
dV ,

where the tensor field P is called Piola stress (note that, in every point X, the
tensor P is defined as a linear function mapping vectors in the reference config-
uration into displacements in the actual configuration. The symbol : denotes the
saturation between tensors of the same order (see [26] for more details about the
introduced index notations). As in the previous expression of virtual work only
the first gradient of virtual displacement appears, we can call the corresponding
class of continua also first gradient continua.

2. Cauchy definition of continua. Contact interactions reduce to forces per unit
area of (suitably regular) contact surfaces, and the surface vector field represent-
ing this force per unit area (so-called Cauchy vector) depends (linearly) only on
the normal of contact surface.

50 It has to be said that Richard Toupin[54] never believed that the mentioned theorem had the said
presumed enormous range of applications. In his papers Toupin systematically applied variational
principles, and for this reason he was always at odds with Noll.

51 If one agrees that contact actions may depend in general on the shape of the contact surface, then those
continua for which the Hamel–Noll theorem holds are a particular class in a most general set of continua.
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If the expression for the internal work can be deduced from a stored deformation energy,
then (we omit the indices when this will not cause ambiguities: this notation is already
present in the works by Piola)

P = ∂L

∂ (∂χ/∂X)
.

If dissipation phenomena are also included via a Rayleigh potential, then

P = ∂L

∂ (∂χ/∂x)
− ∂R

∂
(
∂2χ/∂t∂x

) .

Existence of Cauchy stress and corresponding balance equations as deduced by
Piola from the principle of virtual work
In [27] Piola discusses the postulation of mechanics based on the principle of virtual
work, and shows that using this postulation scheme:

1. the tetrahedron argument becomes superfluous;
2. the concept of Cauchy stress can be easily deduced from a simple Piola’s transport

of Piola’s stress;
3. the concept of contact force becomes a simple consequence of the concept of

virtual work;
4. the statement of the balance of forces is equivalent to the principle of virtual work

for Cauchy continua.52

We show now, in modern notation, how Piola proceeds.

a) He starts from the principle of virtual work in the formulation (8.27).
b) Then he calls Cauchy–Lagrange continua those for which:
b1) the internal work is expressed in terms of the first gradient of the virtual displace-

ment only; and
b2) inertial forces are given in terms of the second time derivative of placement field

and of a scalar field � (volume mass density).

As equations point b) above reads as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

δWint(ξ; t) =
ˆ

V

P (X; t) : ∇Xξ dV =
ˆ

V

P A
i (X; t)

∂ξi

∂XA
dV ,

δWiner(ξσ; t) =
ˆ

V

−�∂
2χ

∂t2
· ξdV .

(8.33)

Then, using integration by parts, he proves that:

c) the principle of virtual work together with the assumed structure for δWint and
δWiner, implies that for δWext(ξσ; t) a specific representation is possible:53

52 A crystal clear modern version of the proof of this equivalence can be found in [81].
53 This point will be commented on in more detail in what follows. Piola explicitly remarks that this

circumstance should not surprise anybody who had studied the theory of Euler fluids. Indeed, for these
fluids it is assumed a priori that the deformation energy depends on the actual mass density only, and as a
consequence it is proven that they cannot support shear forces on their boundaries. It is therefore logically
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indeed, there must exist two vector fields bV and b∂V (external surface and
volume forces), eventually depending on the field χ, such that (the dot denotes
the inner product between vectors)54

δWext(ξσ; t) =
ˆ

V

bV · ξσdV +
ˆ
∂V

b∂V · ξσd�. (8.34)

d) The following local Euler–Lagrange conditions hold (we use here for compact-
ness the Einstein convention which assumes summations over repeated indices):⎧⎪⎪⎨

⎪⎪⎩
∂P A

i

∂XA + bV
i = �∂2χi

∂t2 ∀X ∈ V

P A
i NA = b∂V

i ∀X ∈ ∂Vi .

(8.35)

e) Subsequently, Piola obtains the transformation formulas from through reference
to the actual configurations for normals to surfaces and for the divergence oper-
ator.55 These expressions (obviously Piola did not use the modern tensorial or
matrix notation, see [26] and [25]) are

J−1F i
Anida = NAdA,

∂P A
i

∂XA = J ∂
∂xj

(
J−1P B

i F
j
B

)
,

(8.36)

where we take the reference surface, Σ , as having normal N at the point X

and Hausdorff measure dA, the surface σ = χ(Σ), as having normal n at the

point x = χ(X) and Hausdorff measure da, the matrix F = [
F i

A

]
:=

[
∂χi

∂XA

]
(we assume that in both the reference and actual configurations one orthonormal
global basis is chosen), and we have defined J = detF .

f) As a final step, Piola replaces (8.36) inside (8.35) and obtains⎧⎪⎪⎨
⎪⎪⎩

∂
∂xj

(
J−1P B

i F
j
B

)
+ J−1bV

i = 0 ∀x ∈ χ (V )

(
J−1P A

i F
j
A

)
nj = b∂V

i
dA
da

∀x ∈ χ (∂V ) .

(8.37)

These equations, when introducing the definition

T
j
i := J−1P A

i F
j
A (8.38)

reduce to the balance of force, in local form, as obtained in the Cauchy postulation
scheme.

clear and already generally accepted that the assumptions made on the structure of internal work limit the
capacity of a continuum to support external forces. In other words: in continuum theories, the admissible
expression for external forces applicable to a continuum depends on the postulated material properties.

54 In the language of measure theory, we can say that the external work is the sum of a volume measure
absolutely continuous with respect to a Lebesgue measure plus a surface measure absolutely continuous
with respect to a bi-dimensional Hausdorff measure.

55 The works by Piola were never lost, they were always available in libraries all over the world: Italian is
not a lost language and the notations of mathematical analysis are universal. Moreover, Edward John
Nanson was born the same year that Piola died. How it was possible to attribute to Nanson the
aforementioned formula of transformations of normals is not clear.
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The reader will recall that, in the Cauchy postulation scheme, the balance of force in
integral form and the existence of only contact surface forces are postulated, while the
linear dependence of contact forces (as given by the second equation in (8.37)), i.e. the
existence of the Cauchy stress tensor, and the first equation in (8.37) are deduced as
consequences.

The Cauchy proof is based on a tetrahedron argument, which has been considered by
Truesdell the most fundamental argument in continuum mechanics (see [57]; moreover
in [44], while discussing variational principles, it is stated that the concept of Cauchy
stress is not deduced using a variational postulation, unless one starts from a least action
principle). The procedure illustrated above, already used by Piola in 1848, shows that,
on the contrary, all continuum mechanics studied by Truesdell and Noll can be based
on the principle of virtual work. The initial statements from 1 to 3 are thus proven. The
proof of statement 4 is simply completed by using, for instance, the results presented by
Antman in [81].

8.6.5 Generalized Continua and Their Relevance in the Theory of Metamaterials

We want to consider several generalizations of Cauchy continuum and, among these, in
particular the model which was proposed by Gabrio Piola in his (unfortunately widely
neglected) Memoir of 1848. We will not delve into the mathematical and physical moti-
vations which led Piola to propose this formulation. We will limit ourselves to presenting
the general structure of the theory, basing it on the principle of virtual work, and to
noting that Piola clearly pointed out the reasons why the Cauchy model could not be the
most general one. We will also underline that it seems very difficult to formulate Piola’s
continuum models in the framework of postulation schemes based on Balance Laws.

Because of the predominance of the Cauchy postulation and model, many specific
aspects of the first gradient continua have been believed to have a universal validity in
continuum mechanics. Unfortunately, this is not the case. Here we try to make clearer
the conceptual situation, and to point out how the various concepts formulated in the
framework of first gradient can be generalized.

Moreover, it has to be remarked that, when one wants to design new metamaterials,
the clear intent is to exploit at best all the possible effects and phenomena which may
occur during the deformation of bodies. Therefore, when designing metamaterials, one
has to try to use the widest possible family of mathematical models, trying to avoid
overly restricting their range of application. The two chapters of this book dedicated
to pantographic metamaterials give a specific example of how the application of the
principle of virtual work to its full potential can lead to the conception and subsequent
design of materials whose behavior is really unexpected.

The concepts which can be easily extended, without immediately incurring logical
contradictions, from first gradient continua to higher gradient continua include (see e.g.
[13, 56]):

• the action functional;

• the virtual work functional.
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Instead, the following concepts need a more complex elaboration to be generalized:

• Stress and stress tensor;

• Measure of deformation, strain;

• Contact interactions.

It has to be explicitly stated that it is not possible to base the study of higher
gradient continua on using as primitive the concepts of force and couple alone.

Instead, we can easily extend to a wider class of continua the action functional and
the virtual work functional.

8.6.6 Second Gradient Continua

We call second gradient continua those continua for which the internal virtual work
functional is given by the following expression:

δWint(ξ; t) =
ˆ

V

P1(X; t) : ∇Xξ dV + P2(X; t) : ∇2
Xξ dV

=
ˆ

V

P A
1i (X; t)

∂ξi

∂XA
dV +

ˆ
V

P AB
2i (X; t)

∂2ξi

∂XA∂XB
dV ,

(8.39)

where we will call the tensors P1 and P2, the first gradient and the second gradient Piola
stress tensors, respectively.

A Lagrangian second gradient continuum has an action functional given by (we
use the notations of the previous formula (8.5)):

A(
σ(·)) =
ˆ

T

L

(
xμ, 
σ ,

∂
σ

∂xμ
,

∂
2
σ

∂xμ∂xν

)
dV . (8.40)

By recalling the methods used in the previous sections, it is easy to represent first
gradient and second gradient Piola tensors in terms of the Lagrangian density function,
when such a function exists.

The example of second gradient continua shows that, while the attempt to base the
postulation of continuum mechanics on the primitive concept of contact interaction has
been successful (see [7, 8, 10]), on the contrary, by using contact forces and contact
couples alone, it is not possible to describe all possible kinds of interactions between
parts of a deformable body.

Indeed, even if it is more difficult to get this generalization, one can always introduce
the concept of virtual work of contact interactions, defining it as a linear and continu-
ous functional on the set of displacements concentrated on contact surfaces. However,
such a linear functional cannot be, in general, so simple as the one considered by
Cauchy.

To be precise (see [10, 77]): let us consider the functional of virtual work of contact
interactions δWcont. This functional can be regarded as the functional describing the
interactions between two parts of a deformable body as localized on their surface of
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contact. Obviously, when one considers a part of a deformable body P , then the remain-
ing part of the same deformable body is a part of the external world with respect to P .
Therefore δWcont is the part of the functional of external work for P representing those
interactions with the external world which are concentrated on ∂P .

Now, let us denote by ξ the virtual displacement of the material contact surface Σ ,
with NΣ the field of normals to Σ , which is assumed to exist except on a finite number
of curves. We moreover assume that we can determine, for every α = 1, . . . , N , the set
Γα of curves on Σ where the fields ∇βN� (with 0 ≤ β < α) are continuous and the
fields ∇αN� have discontinuities of the first kind.56 We assume that the surface � and
all curves Γα are as regular as needed in our reasoning.

Representation theorem for virtual work of contact interactions in first and
second gradient continua.
We can now state a very important result:

If for every sub-body P of the considered continuum:

• the part of the external work functional representing long-range interactions on P

is absolutely continuous with respect to the Lebesgue measure;

• the same is true of the inertial virtual work functional; and

• the principle of virtual work holds;

then the structures of contact interaction functionals are given:

• in Cauchy continua by57

δWcont =
ˆ

Σ

bcont
Σ (NΣ ) · ξd�

• in second gradient continua by 58

δWcont =
ˆ

Σ

bcont
Σ ,0 (NΣ ,∇NΣ ) · ξd� +

ˆ
Σ

bcont
�,1 (NΣ ) · dξ

dN�

d�

+
ˆ

Γ0

bcont
�0,0(N±

Σ , N±
�Γ0

) · ξd�,

where

• the contact force per unit area bcont
Σ (NΣ ) depends linearly on its argument and the

following representation holds:

bcont
Σ (NΣ ) = PNΣ , (8.41)

which allows for the representation of contact forces in terms of Piola stress and
the normal of the contact surface;

56 A discontinuity of the first kind, or jump discontinuity of a field on a curve embedded in a surface, occurs
when the considered field has continuous limits on both sides of the curve along the surface, but these
limits are not equal. Obviously, ∇0N� = N� .

57 This has been shown by proving the previous point c) and Eq. (8.34).
58 See [13] for a very elegant deduction of this statement, but also [26].
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• the contact force per unit area bcont
Σ ,0 (NΣ ,∇NΣ ) depends linearly on its arguments,

and the following representation holds

bcont
Σ ,0 (NΣ ,∇NΣ ) = (P1 −∇ · P2)NΣ + ∇Σ · ((I −NΣ ⊗NΣ) P2NΣ) ,

(8.42)

where ∇Σ · , ∇· denote surface and volume divergence operators, I − NΣ ⊗ NΣ

denotes the projector on the tangent plane of Σ . The formula above allows for the
representation of surface contact force in terms of first and second gradient Piola
stresses: however, both curvature and normal of the contact surface are involved:

• the contact double force per unit area59 bcont
�,1 (NΣ ⊗ NΣ ) depends linearly on

NΣ ⊗NΣ , and the following representation holds

bcont
�,1 (NΣ ⊗NΣ ) = P2(NΣ ⊗NΣ ), (8.43)

which allows for the representation of contact double forces in terms of the second
gradient Piola stress and of the normal of the contact surface;

• the edge contact force per unit line bcont
�0,0(N±

Σ , N±
�Γ0

) depends linearly on the

tensors N+
Σ ⊗ N+

�Γ0
, N−

Σ ⊗ N−
�Γ0

, where N±
Σ are the limits from both faces

Σ± of Σ concurring in Γ0 of the outer normal fields to Σ , and are defined by
N±

�Γ0
= N±

Σ × TΓ0 , with TΓ0 being the chosen unit tangent vector to the curve

Γ0.60 The following representation holds:

bcont
�0,0(N±

Σ , N±
�Γ0

) = P2

(
N+

Σ ⊗N+
�Γ0

)
+ P2

(
N−

Σ ⊗N−
�Γ0

)
, (8.44)

which allows for the representation of contact forces in terms of the second
gradient Piola stress and of the normals to the contact line and surface.

We postpone to a following subsection the description of contact forces in higher gra-
dient continua, as already the example of second gradient continua can be used to show
the peculiarities of higher gradient theories and the difficulties which one meets when
generalizing some concepts in a more inclusive context.

8.6.7 Peculiarity of Higher Gradient Theories

In higher gradient continua contact interactions need to be represented by many stress
tensors of different order.

The most simple and immediate way for generalizing first gradient models consists
in simply adding higher order stress tensors in the functional of internal work, as duals
of higher gradients of virtual displacements. If, instead of generalizing the functional of

59 Here we use the nomenclature of Germain [13]. Contact double forces are defined as those quantities
which in the expression of virtual work are the factors of the derivatives of virtual displacement along the
normal to the contact surface. A possible physical interpretation of double forces is given in [83].

60 The vectors N±�Γ0
are the outward pointing normal unit vectors to the curve Γ0 when it is regarded as a

boundary respectively of the faces Σ+ and Σ−. The vectors N±�Γ0
are tangent to Σ and play a crucial

role in the process of integration by parts on the surface Σ , when the surface divergence theorem is
applied.
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internal work, the desire is to generalize the formula (8.41) for contact interactions, then
one must deduce the complicated formulas (8.42), (8.43) and (8.44). This has been done
in [7, 8], where a rather involved procedure was conceived to obtain the representation
formulas noted above from so-called quasi-balance of work61 and without postulating
the form of internal work functional.

Higher gradient continua are those continua in which different length scales play an
important role at macro-level (see for instance [83–86] and Chapters 3 and 6 about
pantographic structures). In these continua complex types of contact interactions may
arise, and the geometrical properties of contact surfaces play a greater role in the deter-
mination of contact interactions.

The Hamel–Noll theorem does not encompass such general interactions, as it is based
in a hidden way, on the assumption that all contact forces are distributed on surfaces.

Instead, Eq. (8.44) shows that line contact forces are possible. Moreover, together
with (8.42), the aforementioned edge force representation shows that the existence of
edge forces is strongly related to the dependence of contact surface forces on the cur-
vature of the contact surface. Also one cannot have edge force without having double
forces (see again [7, 8]).

A simple argument of continuity (see again [8]) clearly shows that without edge forces
one cannot have surface forces depending on curvature, and viceversa. In fact, an edge
can be approached in the limit by a family of smoothed surfaces having higher and
higher curvature in correspondence ith the approximated edge.

In the following we will see that in third gradient continua one can also have wedge
contact forces, in points where curves of discontinuity meet. Finally, in general, one can
have kth forces (i.e. dual quantities in work of kth order orthogonal derivatives, both
concentrated on edges and on wedges). In [83] and [87] it is shown, via a homogeniza-
tion procedure, how this kind of interaction may arise at macro-level due to complex
microstructures and micro-mechanisms.

Higher gradient models have been criticized for their complexity, which has often
been used as an argument for refusing their use, their development and their importance.
In facts as high gradient continua are intended to model complexity, to complain of their
complex formal structure is nothing but perverse.

Obviously, we do not need complexity per se: we must use Cauchy models when
they suffice but we should not believe that their structure and the cultural paradigm
developed by some scholars for describing them are the most general conceivable, useful
and possible.

If there is a paradigm developed for considering Cauchy continua as the unique
continuum model for describing the deformation of bodies, then we must change the
paradigm.

8.6.8 Virtual Work Functionals: General Structure

Clearly, there is no reason for limiting our attention only to the expression of internal
work which is valid for Cauchy continua. The need to design exotic metamaterial is

61 An assumption which generalizes the principle of virtual work.



Least Action and Virtual Work Principles 369

a strong motivation for searching for more general models, as by means of them one
can conceive and design more general materials. On the other hand, based on clear and
sound logical reasons, Piola had already underlined the possibility to observe in Nature
materials whose description could not fall within the scope of Cauchy models.

We describe in what follows an adaptation of Piola’s reasoning, in the spirit of work
by Germain [13, 56].

Given a generic sub-body D (i.e. a suitably smooth62 subset of material particles
in the chosen reference configuration) of the continuous body B we must specify, for
every configuration of the body B, the setA of all virtual displacements for D which are
admissible. This means that the placement obtained by adding any admissible displace-
ment to an admissible placement is still admissible. Admissible placements are allowed
by the kinematical constraints imposed to the body.

We will assume that the subset DA of so called “test functions” (i.e. infinitely
differentiable functions having compact support) verifying the imposed constraints is
included in A. Roughly speaking, we assume that, even if the body can have a rich
set of admissible placements and displacements, very regular displacements are always
allowed for.63

Finally we must specify what we mean for virtual work expended on virtual dis-
placements by the internal or external or inertial interaction involving the sub-body D.
We assume that all kinds of virtual work interactions can be represented by linear and
continuous functionals when restricted to the set of test functions DA . The set of test
functions is clearly a vector space. We assume that, in addition, it is endowed with the
structure given by Fréchet topology ([67]). In other words:

We assume that the virtual work functionals of every interaction relative to a sub-
body D are distributions (in the sense of Schwartz [70]) concentrated on D.64

Given the previous assumption, all the theorems and definitions of the theory of
distributions become the conceptual basis of continuum mechanics. Here we accept
the point of view presented in [65], which is a natural evolution of the ideas developed
in [24].65

As we need it again, we recall here once more the following fundamental representa-
tion theorem for distributions (see [70]):

LS1. every distribution having compact support K can be represented as the sum
of a finite number of derivatives of measures all having their support included
in K .66

62 See [10] for some useful smoothness requirements.
63 If one wants to allow for non-smooth displacements but restrain the body from smooth displacements for

some reason, then clearly the following theory must be modified correspondingly.
64 We have denoted by D the topological closure of the set D.
65 The reader will note that while Germain in [13, 56, 65] bases his postulation scheme on the mathematical

tool supplied by the results by Schwartz in [70], Piola in [24] bases his postulation on the results
presented by his Maestro Vincenzo Brunacci in his Corso di Matematica Sublime.

66 This theorem was recalled before in a previous section. As a consequence we have that the following
definition is well-posed: a distribution has order smaller than or equal to k if it is the sum of derivatives
of order h ≤ k of measures.
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Because of LS1 we can conclude that if the virtual work functionals δW to be introduced
for every sub-body D ⊆ B can be regarded as a distribution when restricted to test
functions, then it can be represented as follows:

δW(D, ξ) =
ND∑
i=1

ˆ
D

(∇iξ) | dTi,D , ∀ξ ∈ D (8.45)

where the symbol | is introduced to denote the total saturation of contravariant and
covariant tensor indices, ND and dTi,D (i = 1, . . . ND) are, respectively, integer and
tensor valued measures which depend upon the considered sub-body D ⊆ B. We will
call Piola stress measures (or Piola stresses) the measures dTi,D (i = 1, . . . ND).

Classes of constitutive equations for deformable bodies
Obviously different constitutive descriptions will be selected when specifying the prop-
erties of the set of measures dTi,D (i = 1, . . . ND) to be used for internal virtual work.

For instance:

• Cauchy first gradient continua are such that their internal virtual work func-
tional has ND = 1 for all sub-bodies and the measure dT1,D is absolutely contin-
uous with respect to the Lebesgue measure;

• Second gradient continua are defined in [13] as those continua for which ND =
2 for all sub-bodies and the measures dT1,D and dT2,D are absolutely continuous
with respect to the Lebesgue measure (see previous formula (8.39));

• Lagrangian Nth gradient continua are those continua whose total work func-
tional is obtained by calculating the first variation of the action functional given
by (we use the notations of the previous formula (8.5)):

A(
σ(·)) =
ˆ

T

L

(
xμ, 
σ ,

∂
σ

∂xμ
, . . . ,

∂N
σ

∂xμ1 . . . ∂xμN

)
dV . (8.46)

• In all the discussion below we assume that the order ND and the measures
dTi,D (i = 1, . . . ND) are not depending on the considered sub-body D of the
body B. We call this the condition of localization of Piola stresses.

• We call Nth gradient Piola’s continua those for which: i) the condition of local-
ization of Piola stress measures is verified; ii) the measures dTi = Ti dV are
absolutely continuous with respect to the Lebesgue measure; iii) inertial work67

is given by

δWiner(ξσ; t) =
ˆ

V

−�∂
2χ

∂t2
· ξdV ;

iv) the internal work is given by

δWint(D, ξ) =
N∑

i=1

ˆ
D

(∇iξ) | Ti dV , ∀ξ ∈ DA, (8.47)

67 We note that the micro-inertial terms have not been included (see for example Polizzotto [88] for other
possible choices).
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where the Piola stresses Ti are smooth enough (suitably differentiable in the sense
of distributions) to allow for the integration by parts which we will perform in the
subsequent section on contact forces.

An important remark about Piola stress measures and the functional space of
admissible virtual displacement
There is an important mathematical problem which is related to the virtual work func-
tionals and Piola stress measures which we need to highlight.

Piola stress measures are defined as distributions and their domain is therefore, by
definition, the subset of test functions DA verifying some constraint or some initial or
boundary conditions. Now there are two dual extension problems to be solved in order
to frame in the correct functional space the problem of determination of the motion of
considered continua:

1. Having specified the Piola stress measures defining the internal work distribution
in the set DA to find the maximal set of functions including DA and a suitable
topology on this set (which we will identify with the set previously called A)
such that the internal work distribution can be extended into a continuous linear
functional on A.

2. Having specified the set A including DA defining the set of virtual admissible
displacements and endowed with its topology to find the set of all Piola stress
measures for which the duality formula (8.45) defines a linear and continuous
functional in A .

The postulation process of continuum mechanics based on the principle of virtual work
supplies a clear set of mathematical problems formulated in the framework of functional
analysis and the theory of distributions.

8.6.9 Deformation Measures in Lagrangian N th Gradient Continua

In [25] the problem of finding the right deformation measure in the case of N th gradient
continua is addressed from a historical point of view.We refer to the analysis which has
been developed there for all the technical details. The interested reader can also see how
in [26] the case of second gradient continua can be addressed. We limit ourselves here to
recalling some of the results presented in the literature which are relevant in the present
context.

Piola, in our opinion correctly, bases his analysis on finite deformation analysis at
first and it is only subsequently that he eventually linearizes the deformation mea-
sures obtained. The reason that this is the most correct approach is that experience of
infinitesimal deformations and placements is, in general, lacking. Rigid placements are
preserving distances and their representation is easily obtained by means of translations
and rotations, i.e. affine transformations whose linear part is orthogonal. It is only after
the process of linearization, which is valid for small displacements and deformations,
that skew symmetric linear transformations play a (limited!) role.
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By underlining this circumstance and point of view, Piola introduces the tensors

F = ∇χ, C = FT F ,

and, with simple arguments, concludes that if the placement is rigid then

C = I .

Therefore one can conclude that the field C − I must be non-vanishing when there is
a deformation phenomenon.

Next Piola considers a generic placement and also a very general class of internal
interactions, which in general involve long distance interactions between the material
particles which constitute the body. To be precise, Piola assumes that at a micro-level
the relevant body consists of a discrete system of particles and considers a pairwise
interaction depending on the particle distance as a decreasing function. Clearly this kind
of interactions is objective: i.e. they do not depend on the observer. In the particular
case of Lagrangian continuous bodies, Piola’s interactions include the case in which
deformation energy depends on all the variations of the distances between any pair of
material particles between the reference and the actual configurations.

With ingenious reasoning he:

i) introduces a homogenized continuum, equivalent to the discrete system at large
length scales;

ii) shows that, in order to recover his class of interactions, and when the particle
interaction is smooth, in general one may need all gradients of C;

iii) as a particular case he considers the class of Lagrangian continua whose defor-
mation energy depends on all the gradients of C up to the N th order.

Actually Piola’s arguments were very general and led him to determine the most general
set of fields which may describe locally the state of deformation of continua whose
kinematics is described by their placement. To this end he finds the following important
equation (for more details see again [25], where the relationship between this statement
and the Riemann condition of flatness is established):

∇kF = F−1M(C, . . . .∇kC),

where M is a suitable function which depends linearly on its arguments.
Then Piola exploits this relationship to conclude that68 the maximal list of quan-

tities which are invariant under rigid rotations and can be obtained from the list{
F ,∇F , . . . .∇kF

}
is

C,∇C, . . .∇kC.

Therefore if we want to generalize the definition of first gradient continua by consider-
ing deformation energies depending on higher gradients of placement by imposing the
objectivity of this dependence we are led to consider C and all its gradients up to the
N th gradient as the appropriate deformation measure.

68 Here we use the modern nomenclature; the interested reader can peruse [25] to explore Piola’s original
notations and reasoning.
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8.6.10 Consequences of the Principle of Virtual Work on the Structure of Contact
Interactions in N th Gradient Continua

The structures of the internal work functionals, external work functionals (contact
work functionals are a particular case of external work functional, as we have already
remarked) and inertial work functionals are not independent.

Indeed, it is obvious that:

the principle of virtual work implies a relationship between the work
functionals involved.

For instance, if the structures of internal work functional and inertial work functional
are chosen via a constitutive choice (as was done e.g. when we introduced Piola N th
gradient continua), then stipulating that their sum plus the external virtual work func-
tional has to vanish for every admissible virtual displacement (which is the statement of
the principle of virtual work) implies a limitation to the possible admissible choices for
external work functionals. In other words:

The assumption of the constitutive equations for internal work and inertial
virtual work imposes a specific structure to the possible contact interactions

involving the given body.

This point has been extensively commented upon in the previous sections, but we
want to go further. Piola proceeded to formulate the previous considerations and rebut-
ted possible objections (or those objections which he knew were frequently cited in
opposition) by remarking that one should not be surprised by their consequences, as
nobody is surprised by the observation that Euler fluids, whose internal energy depends
only on Eulerian mass density, cannot interact at their boundaries with shear contact
surface forces.

Further considerations of methodological nature are required here:
Physical intuition?
In the postulation approach based on balance of forces and torques, the different assump-
tions are not logically connected one with another as they are formulated separately. The
list of independent assumptions is long: i) form of local (or global) balance equations; ii)
constitutive equations for every flux and source term; and iii) constitutive equation for
external interactions, which are intended to supply boundary conditions for the balance
equations already postulated. It has been remarked by the scholars preferring postulation
based on balance laws that it is rather difficult to choose constitutive equations for exter-
nal interactions which are logically compatible with the other postulated relationships.
Therefore, very often, it is claimed that boundary conditions need guidance: physical
intuition and evidence. Like naive inductivists, these scholars need to deduce directly
from experiments some postulates of their model. Why this point of view must be
discarded is discussed at length in Chapter 4.

This inductivist attitude has been extended further. Indeed, in order to establish
the needed logical restrictions on (and relationships among) postulated constitutive
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equations, it was necessary to invoke physical evidence once more: in this case the
entropy inequality (see e.g. [45, 79, 80]).

Why one should introduce entropy (and heat production and balance of total energy)
in a purely mechanical context is not clear. Moreover, the Lex Parsimoniae and the
Occam’s Razor approaches require that the minimum possible assumptions be used
while formulating theories.

This is another argument which must be considered for preferring postulations based
on the principle of virtual work.

A particular class of external interactions and contact interactions
We explicitly limit ourselves now to considering a particular class of continua. For these
continua the external interactions involving every regular sub-body D are described by
a virtual external work functional which we assume can be split into the sum of two
addends.

• The first addend models long range external interactions between D ⊆ B and
the world external to D. This external interaction functional is assumed to be
represented by a distribution which coincides with an integrable function (in the
sense of Lebesgue). The inertial virtual work is assumed to be of this last type.

• The second addend corresponds to contact actions. Contact interactions are those
particular interactions which are assumed to be distributions concentrated on
the boundaries of D and are conceived to account for the localized external
interactions involving D .

Some needed results form the theory of distributions and differential geometry
In this context, it is relevant to consider the following results obtained by Laurent
Schwartz (see [70]):

LS2 Given a distribution whose support is included in a regular embedded subman-
ifold69 M ⊂ R

m it is possible to represent it uniquely as a finite sum of transverse
derivatives of extensions of distributions defined on M .70

Obviously, we will want to consider sub-bodies having as boundaries polyhedra or sur-
faces which are diffeomorphic up to a certain degree to polyhedral surfaces. Therefore
the representation theorem by Schwartz must be generalized, even if it gives a useful
starting point for our investigations.

With the aim of establishing the structure of contact interactions in Piola’s continua
it is necessary to study the structure of a distribution D:

• whose support is included in a compact piece-with-boundary manifold M71 suit-
ably regular and embedded in R

3,

69 We explicitly note that the submanifolds considered by Schwartz do not have boundaries. In Schwartz
nomenclature regularity means smoothness and absence of boundaries.

70 A distribution defined on a submanifold M can always be extended to a distribution whose support is
included in an open set including M .

71 For a precise definition see [89]. In a three-dimensional space one can embed curves or surfaces. Roughly
speaking we consider here the surfaces which include curves where normals and gradients of normal
fields may have first kind discontinuities or curves which include a finite set of points where the tangent
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• for which the following representation formula holds

DN
M (ξ) =

ˆ
M

S | ∇Nξ dHM , (8.48)

where S and dHM denote a suitably regular N -times contravariant tensor field
defined on M and the Hausdorff measure relative to M , respectively and the sym-
bol | denotes the complete saturation of contravariant and covariant components.

The key results of this study are included in the appendix which concludes the present
chapter, and leads us to the following:

The distribution given by the previous formula (8.48) can be represented as follows

DN
M (ξ) = DN

⊥M (ξ)+D
N−1
L (ξ)+D

N−1
∂M

(ξ),

where

DN
⊥M (ξ) :=

N∑
J=0

(−1)N−J

ˆ
M

(
divN−J

�M
(S)

)
|
(
∇J ξ

)
⊥

D
N−1
L (ξ) :=

N−1∑
J=0

(−1)N−1−J

ˆ
L

((
P(divN−1−J

�M
(S)) · ν

)+

+
(
P(divN−1−J

�M
(S)) · ν

)−) | ∇J ξ

D
N−1
∂M

(ξ) :=
N−1∑
L=0

(−1)N−1−L

ˆ
∂M

P(divN−1−L
�M

(S)) · ν | ∇Lξ.

In other words:
A distribution DN

M of order N concentrated on an embedded manifold M can be
represented as the sum of: i) a distribution DN

⊥M of order N concentrated on M and
totally orthogonal to M; ii) a distribution D

N−1
L of order N − 1 concentrated on L, i.e.

the union of submanifolds embedded in M where either the field S or the normal fields
to M or the gradients of these normal fields up to the order N − 1 are jumping; iii) a
distribution D

N−1
∂M

of order N − 1 concentrated on ∂M , i.e. on the boundary (or border)
of M .

The structure of contact interactions in N th gradient continua
Here we want simply to show the complexity of the structure of contact interactions
which may arise in N th gradient continua. Therefore, we postpone the most general
possible representation formulas to more technical works and we assume that:

Piola stresses and all gradients of the normal fields are continuous on the boundary
∂B.

Therefore, the only non-smooth curves embedded in ∂B which we consider are those
where the normals to ∂B suffer discontinuities of the first kind. This is the case studied
in [10]. Referring to it for more details we describe here the main results found there.

unit vector suffers first kind discontinuities. For more details the reader is referred to the appendix to this
chapter.
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External virtual work functional for N th gradient continua Let us consider an N th gra-
dient continuum B. Let D be a sub-body of B whose topological boundary is a compact
piece-with-boundary suitably smooth manifold. Under the assumptions specified in the
previous paragraph, the principle of virtual work implies that the external virtual work
functional can be additively decomposed in terms of:

i) a functional concentrated on the union of faces SD of the boundary of D; this
functional, once regarded as a distribution, is totally orthogonal, absolutely continuous
with respect to the HausdorffH 2 measure and its order is smaller or equal to N − 1,

ii) a functional concentrated on the edges ED of the boundary of D; this functional,
once regarded as a distribution, is totally orthogonal, absolutely continuous with respect
to the HausdorffH 1 measure and its order is smaller than or equal to N − 2,

iii) a functional concentrated on the wedges WD of the boundary of D. This func-
tional is simply a discrete distribution whose order is smaller than or equal to N − 3,

iv) a functional absolutely continuous with respect to the Lebesgue measure of D.
In algebraic form:72

δWext(D, ξ) =
ˆ
D

Eξ dH 3 +
N−1∑
�=0

ˆ
SD

F� |
(∇�ξ

)
⊥ dH 2

+
N−2∑
�=0

ˆ
ED

G� |
(∇�ξ

)
⊥ dH 1 +

N−3∑
�=0

ˆ
WD

H� | ∇�
⊥ ξ dH 0. (8.49)

where the symbol ⊥ has a meaning which depends on the context as it indicates the
totally transverse derivation operator with respect to the relevant embedded manifold.

All fields E, F , G, and H are sometimes called dual quantities (with respect to the
work functional) of the corresponding virtual displacement or gradient of displacement.
We can also call

E, F0, G0, H0

volume, surface, line or point external forces, respectively, and

F�, G�, H� ; � = 1, . . . N − 1

the surface, line or point external (� + 1)−forces (in this last case we follow the
nomenclature of Paul Germain), respectively.

72 In [10] it is attempted to define the “higher powers of border operator” ∂D, ∂∂D and ∂∂∂D of the
subbody D. This attempt will make sense completely only when it is framed in the theory of integration
of differential forms defined on differential manifolds (for the theory which is presently available we
believe that [1] is still the best reference)

In the present context ∂D coincides with SD when oriented with the normal field outward pointing
with respect to D. For what concerns ∂∂D and ∂∂∂D one has to remark that an edge in ED must be
regarded as the union of the borders of the two faces in SD coming together to form it. Each of these
faces has, on this edge, its own external tangent normal ν (for more details see the appendix). Finally,
concerning wedges one must consider that several edges can meet in them. Therefore, the shape of any
wedge is determined by all tangent-to-edge external vectors coming together, normal to faces externally
pointing vectors and external tangent normal vectors.
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Representation of contact forces in terms of Piola stresses
Applying the process of integration by parts presented in the appendix (or in [10])
we can show that δWext has the same structure appearing in the RHS of (8.49) and
determine all quantities dual to virtual displacement or gradients of virtual displacement
in terms of Piola stresses T�.

In order to use a systematic notation we start by introducing the following:

T (D, �) := T�.

The notation refers to D−volume �−stresses. They are the dual of �−gradients of
displacement in the distribution representing volume virtual internal work.

We are then obviously led to call volume internal (1-)force the quantity

F (D, 0) :=
N∑

�=0

(−1)� div�(T�), (8.50)

which manifestly depends linearly on the set of Piola stresses {T�}.
• The notation just introduced is better justified when noting that the zero in (8.50)

indicates the order of the distribution which it defines.

• The dependence on D indicates that the introduced fields are used to calculate the
images of corresponding distributions via a volume integral.

• One can define only the volume internal (1−)force as there are no transverse
derivatives in the volume D. The manifold D is a three-dimensional manifold
embedded in the three-dimensional Euclidean space E3.

Next introduce the ∂D−surface �−stresses:

T (∂D, �) :=
N∑

�=�+1

(−1)�−1−�(div�−1−�T�) · n, (8.51)

where n represents the normal unit vector to the faces of ∂D.
The ∂D−surface �−stresses are the dual of �−gradients of displacement in the

distribution representing virtual internal work concentrated on ∂D.
Using a systematic notation, we can then introduce the surface density of 1-force as

follows

F (∂D, 0) :=
N−1∑
L=0

(−1)L (div�∂D)L T (∂D, L). (8.52)

The careful reader will remark immediately that this formula, together with (8.51),
contradicts the so-called Cauchy postulate, as dependence on ∇n, .....,∇N−1n appears
in it.

We can therefore conclude that the choice of the dependence of contact surface force
is NOT a postulate, in the sense made clear by our considerations in Chapter 4, but
simply a constitutive assumption. Indeed, the Cauchy postulate is characteristic of first
Gradient Piola continua.
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Similarly, for J > 0, the surface contact (J + 1)-forces are given by

F (∂D, J ) :=
(

N−1∑
L=J

(−1)L−J (div�∂D)L−J T (∂D, L)

)
⊥∂D

. (8.53)

Obviously, surface contact (J+1)-forces depend linearly on the family of stresses {T�}.
They also depend on ∇n, . . . ,∇N−1−J n.

Continuing the process of integration by parts, we arrive at 1-dimensional embedded
manifolds, i.e. curves constituting the second boundary of D.

The ∂∂D−line J−stresses are defined as follows:

T (∂∂D, J ) :=
N−1∑

L=J+1

(−1)L−1−J
(
P∂D((div�∂D)L−1−J T (∂D, L)) · ν

)±
, (8.54)

where P∂D denotes the projection operator on the tangent planes of the faces constitut-
ing ∂D, and the symbol ()± denotes the sum of the values in the brackets on the + and
on the − side of the edge ∂∂D.

• These stresses are defined only for N th gradient continua with N ≥ 2.

• They are the dual of �−gradients of displacement in the distribution representing
virtual internal work concentrated on ∂∂D.

• The integration by parts along the edges will reduce ∂∂D−line J−stresses to
edge forces.

The rationale of our definitions being now manifest, we introduce for J ≥ 0 and H ≥ 0
the line densities of (J +1)− forces F (∂∂D, J ) and the (H +1)–forces concentrated
on wedges by setting

F (∂∂D, 0) :=
N−2∑
L=0

(−1)L (div�∂∂D)L T (∂∂D, L) (8.55)

and, for J > 0 and H ≥ 0,

F (∂∂D, J ) :=
(

N−2∑
L=J

(−1)L−J (div�∂∂D)L−J T (∂∂D, L)

)
⊥δδD

(8.56)

F (∂∂∂D, H ) = T (∂∂∂D, H )

:=
N−2∑

L=H+1

(−1)L−1−H
P∂∂D((div�∂∂D)L−1−H T (∂∂D, L)) · t∂∂D . (8.57)

The reader will note that in the case of wedges, the concepts of wedge-forces and
wedge-stresses coincide. This is not surprising, as all vectors applied to a wedge are
orthogonal to the plane tangent to a wedge, which degenerates to the singleton of
the null vector. Also, note that, when starting with the three-dimensional manifold
D embedded in E3, then the orthogonal space is empty and, therefore, there are no
transverse derivatives, and the only volume forces are 1-forces.
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Balance of �−forces and external forces concentrated on wedges and edges
We conclude this section by remarking that one can easily get the balance laws of
�−forces by simply equating the just calculated volume and contact forces (all denoted
with the symbol F (. . .) ) with the externally applied

F�, G�, H� ; � = 0, . . . N − 1,

i.e. the external surface, line or point (�+ 1)-forces.
It is difficult to conceive how the believers of balance laws may directly postulate

these laws, basing them on physical intuition or evidence.
The analysis developed in the appendix shows that it is possible to apply external line

and point forces also in curves and points which are not edges or wedges, i.e. manifolds
of discontinuity of normal fields to the contact surface. In this case the corresponding
stresses will become singular on the application curve or point.

8.6.11 Some Hints on the Relationship between First and Higher Gradient
Micro-Structured Continua and the Theory of Lagrange Multipliers

We now also give indications of some easy-to-conceive generalizations of what has been
presented so far. One could indeed introduce continua whose kinematics is richer than
in the case of Piola continua. For example, a set of further kinematical descriptors may
be introduced.

A typical example is given by Cosserat continua, whose kinematics is characterized
by an additional field of rotations. This field of rotations is different from the rotation
obtained by decomposing ∇χ into its symmetric and orthogonal parts (so called Cauchy
polar decomposition).

In these generalizations, a difficult task has to be confronted. Indeed, one has to
introduce suitably generalized deformation measures in which placement and placement
gradients are mixed with the other kinematical descriptors.

However, as already remarked in [10], once the kinematical descriptors are intro-
duced, the postulate of virtual work naturally introduces all relevant stresses and balance
laws, once one has postulated what seems to be the most suitable form for inertial and
internal virtual work functionals.

The analysis of constrained continua appears to be more delicate, however. In such a
case, suitable Lagrange multipliers can be introduced to account for the contact actions
induced by the introduced constraints. This analysis becomes rather delicate and needs
some advanced arguments from functional analysis. The interested reader is referred to
[98] on Lagrange multipliers.

In these entries the work by [91] is extended and formulated by using the most recent
results in the theory of constrained optimization in Banach spaces.

8.6.12 How to Implement a Variational Principle Dealing with Initial Conditions

Antman and Osborn (see [82]) faced the problem of formulating a variational principle
which is at least as general as the principle of virtual work, and which has the capability



380 F. dell’Isola, P. Seppecher, L. Placidi, E. Barchiesi, A. Misra

to include the imposition of initial conditions together with boundary conditions. The
motivation for such a conceptual effort is not only imposed by a requirement of logical
consistence and elegance, but also by the need of having a powerful tool to be exploited
in applications.

Their formulation is very elegant and effective, and can, possibly, be extended to
higher gradient continua. We discuss below, by retaining the notations employed up
to now, which are slightly different from those used by Antman, the statement of the
principle of virtual work as formulated at page 445 of [81].

The motion of a Cauchy continuum, i.e. the function χ : V × [0,∞] → E3 which
fulfils the imposed boundary conditions and such that χ(X, t0) = χ0(X), where χ0 is the
initial placement, is determined by imposing the verification of the following condition:ˆ ∞

t0

dt

ˆ
V

[
P : ∇Xη − bV η − �

∂χ

∂t
· ∂η
∂t

]
dV −

ˆ
V

�v0ηdV

∀η ∈ Adm (8.58)

−
ˆ ∞

t0

dt

ˆ
∂V/∂dV

b∂V ηdA = 0,

where the set Adm ⊂ C∞(V̄ ) × [0,∞] 73 is the set of infinitely differential functions
which have compact support included in V̄ and are vanishing on ∂dV and for t = t0,
where the field v0 is the initial velocity of the body, and where the Piola tensor P has to
be determined by some constitutive equations in terms of the motion.

The theory of constitutive equations to be used when the Piola tensor depends locally
only on the value of the first gradient of placement is fully developed in [81], where,
however, the theory of higher gradient continua is simply evoked without making clear
that, in order to develop it, a major improvement of the modeling procedure is needed.

Note that (8.58) is simply the reformulation of Eq. (8.22) with a work functional
δW(η(·; t)) given as the sum of the functionals in (8.33) and (8.34) where, instead of
the virtual displacement ξ(X), the virtual variation of motion function η(X; t) has to be
considered.

By considering a reformulation of Eq. (8.22), considering the work functional used
to formulate the principle of virtual work for higher gradient micro-structured continua,
it is easy to generalize the condition (8.58) to this more complex (and wide) family of
continua.

Clearly, this ease of development justifies fully the preference for the postulations
based on the principle of virtual work.

8.6.13 Some Final Considerations about Nominalism: On the Nature of Forces

Forces and stresses are concepts which are introduced on the basis of the analysis of the
mathematical structure of considered models. They are concepts whose abstract nature
places them very far from physical reality. In Chapter 4 we have tried to understand and
enlarge upon how it could happen that, simply for contingent reasons, the ontological
status of “real objects” was assigned to these abstract concepts. Although no force or

73 With V̄ we denote the topological closure of V .
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stress has ever been measured directly, as only displacements, elongations or deforma-
tions can be really measured, they were regarded as the most fundamental concepts
in the theory of deformable bodies. Moreover, because the naive inductivism tends to
find experimental evidence to support abstract concepts, directly basing on it any kind of
postulate, the balance of force and torque has been attributed an exaggerated importance
(see for instance [45, 57]).

Such a naive inductivism is too much rooted into the tradition of mechanical science:
even in otherwise remarkable work [74] Hellenistic science is criticized because it is
considered to be based on a “series of pure abstract assumptions” without “any experi-
mental support”, which the authors believe is an approach that has been introduced, as
a solid foundation of physical theories, only (sic!) during the Middle Ages, as “Greek
scientists were not interested in experiments” but only “abstract theory”.

The author of [74] seems, therefore, to be unaware of the enormous technologi-
cal achievements of Hellenistic science (see [21]) and also underestimates the impor-
tance, with respect to technological advancements, of the formulation of hypothetico-
deductive models.74

In this chapter we have focused our attention on the description of what we believe
to be the best postulation scheme to be used in the formulation of models for innovative
metamaterials. In this context, we have remarked that the nineteenth century concepts
of stress and strain must be generalized, if exotic materials have to be described, con-
ceived and designed. We believe that there is no possibility to understand, with physical
intuition and/or experimental evidence only, the complex and abstract concepts of force
and stress, and their more modern generalizations.

Even if reading some of the statements of D’Alembert one could believe the contrary,
D’Alembert did use the concept of force, but as a derived concept.75 The concept of
force is an abstract logical construction, invented by the human mind, whose role may
be important to develop a conjectural theory to be tested with experiments76 Forces, in
the postulations based on the principle of virtual work, are derived concepts. Once the
primitive concept of work, or action, has been introduced, then forces and stresses
are defined as the dual in the expended virtual work of displacement and strain,
respectively.

In this definition, which is nominalistic77 in nature, and only in this definition, con-
sists the true nature of forces and stresses. Indeed

“In Nomina est Natura Rerum”. Anonymous (In the names is the nature of things).

74 We repeat here that we are aware, as W.V. Quine among many others states, that “all theories (and the
propositions derived from them) are under-determined by empirical data” and that “although some
theories are not justifiable, failing to fit with the data or being unworkably complex, there are many
equally justifiable alternatives.”

75 We do not believe that “force” is a “non-referring name” as described by Quine.
76 In [21] it is proven that such concepts were already used in Hellenistic science. The presumed incapacity

of Hellenistic science to achieve technological progress is, in reality, simply the result of the failure of
many modern scholars to understand the conjectural nature of scientific theories. The ontology of names
is clear since Hellenistic science: their existence is based on their precisely assigned meaning. Either this
meaning is given by a system of axioms (then they are primitive concepts) or it is given by a set of
definitions (then they are derived concepts).

77 As J. S. Mill, echoing Auguste Comte, had the occasion to state “there is nothing general except names.”
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The above statement, whose more ancient sources have been lost, probably origi-
nated in Middle Age epistemology during the debate about ancient logics and science
and their meaning. We interpret it as a slogan invented to underline the importance of
mathematical formalism. The sentence claims that the nature of things (i.e. phenomena,
experimental evidence and our experience of the world) is given by the names (i.e. the
definitions) used to talk about them.

In the present context we claim that one cannot specify the meaning of the action and
its variation without definitions. If one cannot write integrals on T , calculate derivatives,
impose boundary conditions, define the set of admissible variations and so on then one
cannot transmit the capacity of describing the nature of things. Precise names given to
things are needed to proceed in our investigation of the world in which we are living.
We may add that our models are constructed by means of particular names: constructed
with symbols and formulas.

The interaction between theories and experimental evidence is a complex interplay,
based on motivations, a priori assumptions and experimental feedback. To underline
this circumstance, and therefore the role which evidence must play when building a
theory, the classical scientific tradition developed other slogans.78

“Nomina sunt Consequentia Rerum.” Iustinianus, Institutiones Liber II,7,3
(The names are consequences of the things).

The indication is that we should not use an empty nominalism,79 otherwise we will
develop empty mathematical models, full of non-referring names.80

Mathematical models must describe reality. In order to do this, the exchange between
the phenomena, and their mathematical description must be continuous. Therefore, the
names are to be molded in order to somehow reflect the object or the concept which
they are intended to designate. The classical example is the word “trapezoid” coming
from the Greek word “τραπεζοειςή,” which means stool or small table.81 A whole
mathematical theory must be consciously molded on the basis of what we expect that it
should describe.

In doing so, variational principles can be of great use: Nature seems to minimize
everything and works in a very efficient way.

8.7 Appendix

In this appendix we extend some of the results presented in [10] in a slightly more
general context.

78 Iustinianus used this slogan in a juridic context. However, J.S. Mill’s work proves how close are
philosophy of science and political theory.

79 Here again the work of Quine seems precious to recover and develop the ancient Archimedean spirit.
80 Some negative drifts of modern mechanics lead some scholars to an empty nominalism which either tells

absolutely trivial things in a complex way or tells absolutely nothing, always in a extremely complex way.
81 The reader should think of “a single seat on legs or a pedestal without arms or a back,” as defined in

Dictionary.com. If one had the opportunity to see ancient Roman seats or small tables, one would
recognize the geometrical figure (see [21] for a more detailed discussion of this point).
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8.7.1 Piecewise Regular Surfaces Embedded in E3

We identify the reference configuration of the body with a subset B of the Euclidean
three-dimensional affine space E3. The set of sub-bodies on whose boundary we will
consider contact interactions are the closure of open subsets of B having a topological
boundary which is a piecewise regular surface of the type defined below.

To describe contact interactions we need some concepts of Gaussian differential
geometry and follow closely the notation used in [90]. Indeed, the relevant topological
boundaries, when regarded as embedded submanifolds in E3, are an example of compact
piece-with-boundary smooth manifolds (see [89]). These surfaces are an example of
“shape” as defined in [7, 8].

We say that � is a piecewise regular (orientable and rectifiable) surface embedded
in E3 when there exists a finite collection (A = 0, ....M)

�A := {
γi,A ⊂ �, i = 1, . . . KA

}
of C1 curves (which we call A-edges) whose union is called � and a finite set of points
(which we call wedges)

W := {Wi ∈ Σ , i = 1, . . . , H }
such that all the following conditions are verified:

• Every p ∈ Σ − (W ∪ �) is a regular point of �: this means that there exists a
neighbourhood of p on � for which there exists a local CM+1−diffeomorphism
r defined in R

2. Each one of these local diffeomorphisms is called an internal
chart of Σ . We assume that for every internal chart r the set r(R2) is a rectifiable
surface.

• In every p ∈ Σ − (W ∪ �) there exists a normal vector n(p) to the surface Σ .

• The field n is assumed to have a discontinuity of the first kind on the curves
belonging to �0. The boundary of the surface Σ is assumed to belong to Γ0 and
is denoted with the symbol γ1,0,

• The field ∇An is assumed to have a discontinuity of the first kind on the curves
belonging to ΓA (A = 1, ....M), and in the following ∇0n = n.

• For every p ∈ γi,A there exist two boundary (or border82) charts, i.e. bijective
and smooth functions

r± : [0,∞[× R→ I± ⊂ � (8.59)

such that

r±(0, 0) = p, r±(0,R) = γi,A ∩ I±, (8.60)

(∀y ∈ ]0,∞[× R)
(
r± (y) ∈ Σ − (W ∪ �)

)
, (8.61)

and both the following limits exist

lim
x→(0,0)

∇An(r± (x)) := ∇An±(p).

82 We believe that the generally accepted nomenclature should be modified to avoid the confusion between
the topological boundary and border as defined here.



384 F. dell’Isola, P. Seppecher, L. Placidi, E. Barchiesi, A. Misra

• Every curve γi,A is the boundary of two regular faces Σ±
i,A one of which is called

side + and the other side − relative to γi,A. The unit outward pointing normal
vectors to γi,A in the tangent plane to Σ±

i,A will be denoted respectively with the

symbols ν±i,A.

• Every curve γi,A (whose length will be li,A) can be globally parameterized by the
C1 chart ri,A

ri,A : s ∈ [0, li,A
] �→ p ∈ S

such that 83 ∥∥∥∥dri,A

ds

∥∥∥∥ = 1,
dri,A

ds
· n± = 0.

We will assume that

dri,A

ds
× n± = ±ν±i,A.

• Every wedge Wj ∈ W is the initial or final endpoint for a curve γi,A. In equation
form:

ri,A(0) = Wj or ri,A(li,A) = Wj .

• We call the face of Σ a maximal connected subset of regular points; each face �α

(α = 1, . . . .	) is a manifold with boundary, its boundary being the finite union
of some curves in the set

{
γi,A

}
and some wedges.

On the basis of the previous definition, one can say that piecewise regular orientable
and rectifiable surfaces, are surfaces embedded in E3 having a finite set of curves where
the normal vector field is jumping, and a finite set of curves where ∇An is jumping.
Moreover, these curves are coming together in a finite set of wedges, and for all these
curves a tangent vector is always defined while both the gradients ∇An± of the two
faces coming together on the edge are defined.

8.7.2 Gauss Divergence Theorem for Embedded Riemannian Manifolds

From now on we will assume that we have fixed a global orthonormal basis
(EA, A = 1, 2, 3) in E3, and all needed tensor fields will be represented using their
components in such a basis. As the differential geometric objects forming the piecewise
regular surfaces Σ which we are considering as contact surfaces are either surfaces
with boundary (the faces of �) or curves (the edges of �), in this section we will recall
in a comprehensive way some results which hold for a generic embedded piece-with-
boundary manifold M in E3, be it a regular curve or a surface with boundaries.

Due to our regularity assumptions, it is possible (see [97]) to prove the existence of
Gaussian coordinate systems for such embedded manifolds.84 As a consequence there
is a neighborhood of these embedded manifolds in which the projection operator fields

83 Note that when A > 0 then n+ = n−.
84 These coordinates are such that: i) the considered surface is a coordinate surface (or the considered curve

is a coordinate curve); and ii) the remaining coordinate curves are tangent to the normal fields.
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P (projection on their tangent space) and Q (projection on their normal bundle) can
be defined. These projection operators will be used to represent the needed divergence
operators on the embedded manifolds. Using this representation, Germain obtained in
an expeditious way, in the case of second gradient materials, the representation formulas
which were sought for contact interactions.

Obviously we have

δB
A = P B

A +QB
A, P B

A P C
B = P C

A ,

QB
AQC

B = QC
A, P B

A QC
B = 0.

(8.62)

We consider a set F of fields defined on M: one of these fields will be the field
of unit normals in the case of surfaces, and the field of unit tangents in the case of
curves. We assume that M includes a finite set of lower dimension manifolds whose
union is denoted by L,85 where the fields in F (or their gradients up to the maximal
order considered) may suffer discontinuities of the first kind. The points in M which
do not belong to L are called regular points. In these points, the manifold and all
considered fields have the maximal regularity required. The maximal connected sets of
regular points, in short maximal regularity sets, are called faces if M is a surface or
arcs if M is a curve. We assume that there is a finite number 	 of maximal regularity
sets: we will denote each of them Mσ , with σ = 1, . . . 	. Every element Lβ , where
β = 1, . . . , 
, in L has on each of its two sides a maximal regularity set, which, when
needed, will be called Mβ

±. The unit external normal to the boundary ∂M tangent to M

will be denoted by ν, while, for every element Lβ , the unit external normal to Lβ tangent
to Mβ

±, the tangent and orthogonal projectors to Mβ
± will be denoted respectively ν±β ,

P±β and Q±
β . The limits of every considered field on each side of Lβ will equally be

followed by the corresponding ±β apices and indices.

• Let us consider a vector field W in the set F : W (or one of its derivatives) is pos-
sibly suffering discontinuities of the first kind on the set of lower dimension man-
ifolds L.86 Moreover, we assume that W is regular enough to allow us to apply the
Gauss divergence theorem to every maximal regularity set Mσ . The divergence
theorem applied to the manifold M and the field W reads (see e.g. [97]):

ˆ
M

(P A
B WB ),CP C

A =
	∑

σ=1

ˆ
Mσ

(P A
B WB ),CP C

A

=
ˆ
∂M

WAP C
A νC+


∑
β=1

ˆ
Lβ

[(
WAP C

A νC

)+
β
+
(
WAP C

A νC

)−
β

]

=
ˆ
∂M

WAP C
A νC +

ˆ
L

[(
WAP C

A νC

)+ + (
WAP C

A νC

)−]
.

(8.63)

85 In the case of surfaces we have a finite number of discontinuity curves, in the case of curves we have a
finite number of discontinuity points.

86 We repeat that in L are included the curves where the normal fields to M , or their gradients up to the
maximal order considered, are discontinuous.
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• We can rewrite the previous formula in a compact form. To this end, let divM

denote the divergence operator on M: it maps any tangent vector field W‖,
having components P A

B WB into the scalar field (denoted divMW‖) which has as
components (P A

B WB ),CP C
A :

ˆ
M

divMW‖ =
	∑

σ=1

ˆ
Mσ

divMW‖ =

=
ˆ
∂M

(
W‖ · ν

)+ 
∑
β=1

ˆ
Lβ

[(
W‖ · ν

)+
β +

(
W‖ · ν

)−
β

]
(8.64)

=
ˆ
∂M

(
W‖ · ν

)+ ˆ
L

[((
W‖ · ν

))+ + ((
W‖ · ν

))−]
where the dot product stands for the saturation of contravariant and covariant
indices.

• The previous definition of divergence operator on M can be easily extended to an
N th order tensor field T by applying the derivation and projection to a specific
coordinate. As a consequence, divMT is a (N − 1− th)-order tensor.

8.7.3 Projections of Tensor Fields Defined on Embedded Manifolds

We are interested in studying the structure of distributions concentrated on embed-
ded manifolds. The main result on which we base our analysis is the representation
formula (8.48), where the totally symmetric tensor ∇Nξ is saturated with a tensor S.
Clearly, this last tensor can be naturally assumed to be totally symmetric. Moreover, as
the N th gradient operator is defined as a covariant tensor, S is naturally regarded as a
contravariant N th order tensor.

Therefore, in what follows, we will consider N th order totally symmetric tensors and
we will represent their contravariant and covariant components with the upper i1i2...iN

and lower j1...jN
indices notations, respectively.

For any totally symmetric tensor field S of order N defined on M , the following
projected tensors fields can be defined:

S
j1...jN

⊥ := Si1i2...iN Q
j1
i1

Q
j2
i2

. . . Q
jN

iN
(8.65)

P(S)j1...jN := Sym
j1...jN−1

(
N−1∑
α=0

Cα
NSi1i2...iN Q

j1
i1

. . . Q
jα
iα

P
jα+1
iα+1

. . . P
jN−1
iN−1

)
P

jN

iN
, (8.66)

where Cα
N denote the binomial coefficients.

The field S⊥ is the field obtained projecting all components of S in the normal bundle
of M . Instead, the field P(S) is obtained by extracting at its last component a projector
in the tangent space of M and calculating the total symmetric part of its factor.

The obvious identity

Sj1...jN = Si1...iN (P j1
i1
+Q

j1
i1

) . . . (P jN

iN
+Q

jN

iN
)
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implies that

Sym
j1...jN

P(S)j1...jN = (S − S⊥)j1...jN . (8.67)

To write the integration by parts formula which follows in a more compact way we
use the composed operator div�M and its iterates divα

�M defined as follows:

div�M (T ) := divM (P(T )) (8.68)

div0
�MT := T and divα

�M (T ) := div�M (divα−1
�M

(T )). (8.69)

First integration by parts formula:
Let T be a totally symmetric N th order tensor field and let V be a scalar field, both
defined on M .

If they are suitably regular then the following equality holds:ˆ
M

T | ∇NV =
ˆ

M

T⊥ |
(
∇NV

)
⊥
−
ˆ

M

div�M (T ) | ∇N−1V

+
ˆ

L

(
(P(T ) · ν)+ + (P(T ) · ν)−

) | ∇N−1V +
ˆ
∂M

P(T ) · ν | ∇N−1V ,

(8.70)

where the symbol | denotes the saturation of contravariant and covariant indices of the
tensors involved.

Note that it is only because all these tensors are totally symmetric that the notation
used is not ambiguous. Moreover, it was only to avoid ambiguities that we introduced
the symbol P(T ) · ν denoting the saturation of the last contravariant index of P(T ) with
the covariant index of ν.

In the less ambiguous component representation Eq. (8.70) readsˆ
M

T i1i2...iN V ,i1i2...iN =
ˆ

M

T i1i2...iN Q
j1
i1

Q
j2
i2

. . . Q
jN

iN
V ,j1j2...jN

−
ˆ

M

((
P(T )j1...jN

)
,l P

l
jN

)
V ,j1j2...jN−1

+
ˆ

L

((
P(T )j1...jN νjN

)+ + (
P(T )j1...jN νjN

)−)
V ,j1j2...jN−1

(8.71)

+
ˆ
∂M

(
P(T )j1...jN νjN

)
V ,j1j2...jN−1 .

Proof of the first integration by parts formula
The tensors P(T ) and (T − T⊥) have been defined to have the same totally symmetric
part. Therefore:ˆ

M

T i1i2...iN V ,i1i2...iN =
ˆ

M

T i1...iN Q
j1
i1

. . . Q
jN

iN
V ,j1...jN

+
ˆ

M

P(T )j1...jN V ,j1...jN
.
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Moreover we have that P(T )j1...jN−1jN = P(T )j1...jN−1lP
jN

l . By using the divergence
theorem (see 8.63):
ˆ
M

T i1...iN V ,i1...iN =
ˆ
M

T i1...iN Q
j1
i1

. . . Q
jN

iN
V ,j1j2...jN

+
ˆ
M

P(T )j1...jN−1lV ,j1...jN−1jN
P

jN

l

=
ˆ
M

T
j1...jN

⊥ V ,j1...jN
−
ˆ
M

(
P(T )j1...jN−1l

)
,jN

P
jN

l
V ,j1...jN−1

+
ˆ
M

(
P(T )j1...jN−1lV ,j1...jN−1

)
,jN

P
jN

l

=
ˆ
M

T
j1...jN

⊥ V ,j1...jN
−
ˆ
M

((
P(T )j1...jN−1l

)
,jN

P
jN

l

)
V ,j1j2...jN−1

+
ˆ
L

((
P(T )j1...jN−1jN νjN

)+ + (
P(T )j1...jN−1jN νjN

)−)
V ,j1j2...jN−1

+
ˆ
∂M

P(T )j1...jN−1lV ,j1j2...jN−1 P
jN

l
νjN

,

the proof is concluded.

Complete integration by parts formula
It is possible to apply exactly N times the formula of integration by parts that we have
just found.

Let T be a suitably regular totally symmetric tensor field of order N defined on M .
We have:
ˆ

M

T | ∇NV =
N∑

J=0

(−1)N−J

ˆ
M

(
divN−J

�M (T )
)
|
(
∇J V

)
⊥

+
N−1∑
L=0

(−1)N−1−L

ˆ
L

((
P(divN−1−L

�M
(T )) · ν

)+

+
(
P(divN−1−L

�M
(T )) · ν

)−) | ∇LV . (8.72)

+
N−1∑
L=0

(−1)N−1−L

ˆ
∂M

P(divN−1−L
�M

(T )) · ν | ∇LV .

Proof by induction
When N = 1 the formula has already been proven.

In the inductive step we start by assuming that (8.72) holds for a generic N .
Then, we consider the LHS of Eq. (8.72) when the order of T is N+1. By integrating

by parts we getˆ
M

T | ∇N+1V =
ˆ

M

T |
(
∇N+1V

)
⊥
+

−
ˆ

M

div�MT | ∇NV +
ˆ

L

(
(P(T ) · ν)+ + (P(T ) · ν)−

) | ∇NV

+
ˆ
∂M

P(T ) · ν | ∇NV .
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Afterwards, we apply the induction hypothesis to the LHS. We note that the N th order
tensor for which we apply (8.72) is now div�MT . With simple calculations we get:
ˆ

M

T | ∇N+1V =
ˆ

M

T |
(
∇N+1V

)
⊥

−
N∑

J=0

(−1)N−J

ˆ
M

(
divN−J

�M (div�MT )
)
|
(
∇J V

)
⊥

−
N−1∑
L=0

(−1)N−1−L

ˆ
L

((
P(divN−1−L

�M
(div�MT )) · ν

)+

+
(
P(divN−1−L

�M
(div�MT )) · ν

)−) | ∇LV

+
ˆ

L

(
(P(T ) · ν)+ + (P(T ) · ν)−

) | ∇NV

−
N−1∑
L=0

(−1)N−1−L

ˆ
∂M

P(divN−1−L
�M

(div�MT )) · ν | ∇LV

+
ˆ
∂M

P(T ) · ν | ∇NV ,

which can be seen to prove our statement by extending the first summation range up to
N + 1, and the following summations range up to N .

It is clear that the formula just determined can be used to decompose any regular
distribution of order N on M in a transverse regular distribution of the same order on M

and a distribution of order N − 1 concentrated on L ∪ ∂M . In this way, we generalize
the previously mentioned result LS2 found by Schwartz.
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